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Following the detection of an infectious disease outbreak, rapid epidemiological

assessment is critical for guiding an effective public health response.

To understand the transmission dynamics and potential impact of an outbreak,

several types of data are necessary. Here we build on experience gained in the

West African Ebola epidemic and prior emerging infectious disease outbreaks

to set out a checklist of data needed to: (1) quantify severity and transmissibility;

(2) characterize heterogeneities in transmission and their determinants; and (3)

assess the effectiveness of different interventions. We differentiate data needs

into individual-level data (e.g. a detailed list of reported cases), exposure data

(e.g. identifying where/how cases may have been infected) and population-

level data (e.g. size/demographics of the population(s) affected and when/

where interventions were implemented). A remarkable amount of individual-

level and exposure data was collected during the West African Ebola epidemic,

which allowed the assessment of (1) and (2). However, gaps in population-level

data (particularly around which interventions were applied when and where)

posed challenges to the assessment of (3). Here we highlight recurrent data

issues, give practical suggestions for addressing these issues and discuss

priorities for improvements in data collection in future outbreaks.

This article is part of the themed issue ‘The 2013–2016 West African

Ebola epidemic: data, decision-making and disease control’.
1. Introduction
Detection of a new infectious disease outbreak requires rapid assessment of

both the clinical severity and the pattern of transmission to plan appropriate

response activities. Following the subsequent roll-out of interventions, contin-

ued evaluation is necessary to detect reductions in transmission and assess

the relative impact of different interventions. Surveillance data are crucial for

informing these analyses, and directly determine the extent to which they can

be performed.

Despite the unprecedented scale of the 2013–2016 West African Ebola epi-

demic [1,2], detailed data were collected during the outbreak, which proved

invaluable in guiding the response [3–10]. Multiple studies have already con-

sidered the lessons to be learned from the Ebola experience with respect to
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Box 1. Recommendations for collecting and using data for outbreak response.

1. Collecting relevant data
Data need to be collected at each of the three levels:

— individual level: detailed information about cases

— exposure level: information about exposure events that may have led to transmission

— population level: characteristics of the population(s) in which the outbreak is spreading and the interventions carried out

in the population(s)

Although some data will be context-specific, others, in particular at the population level, will be useful for a wide range of

epidemics, and should be routinely and centrally collected in preparation for the next outbreak.

2. Optimizing data quality
Having a general framework ready in advance of the next outbreak will facilitate:

— quality and timeliness of data

— centralization and harmonization of data at all three levels

— preparedness to deploy training material, personnel and logistical resources

There is substantial room for improvement in the quality of data collected in an epidemic context, particularly for emerging

pathogens.

3. Ensuring adequate data availability
Data need to be shared ensuring a balance between the following considerations:

— ethical: protecting anonymity while ensuring data are sufficiently detailed to be useful

— scientific: wide data access is desirable to promote independent analyses; however, mechanisms must be in place for

systematic comparison of results

— practical: deciding on a data format for sharing, on who will be responsible for data cleaning and on how various roles

will be acknowledged

Discussions and decisions relating to data sharing remain ongoing and guidelines should be agreed on in advance of the next

outbreak.

4. Analysing data and reporting results in an appropriate manner
The scientific community should agree on guidelines for epidemic modelling and analyses (such as those in place for report-

ing experimental studies), such as:

— assumptions underlying analyses should be clearly stated

— sensitivity to these assumptions should be tested

— uncertainty in results should be adequately explored and reported

These are particularly relevant for reporting epidemic projections.
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coordinating international responses to health crises, strength-

ening local health systems and improving clinical care and

surveillance tools [11–23]. Here we discuss what can be

learned to improve real-time epidemiological assessment in

future outbreaks via improved data collection and analyses,

building on similar contributions after other epidemics

[24–26]. We focus on efforts to reduce and interrupt trans-

mission. First, we outline analyses that are essential to inform

response activities during different stages of an epidemic.

Second, we detail the various types of data needed to perform

these analyses, with examples from the Ebola experience.

Third, we summarize the successes and challenges of data

collection experienced during this outbreak, and the impli-

cations this had for answering key public health questions.

Fourth, we suggest improvements that could be implemented

in future outbreaks, again drawing from the Ebola experience.

Finally, we discuss issues related to availability of data and

analyses (box 1).
2. Key public health questions and
corresponding analyses

Key public health questions for any emerging infectious dis-

ease outbreak are the following: (i) What is the likely public

health impact of the outbreak? (ii) How feasible is controlling

the outbreak and what interventions would be appropriate?
(iii) Are current interventions effective and could they be

improved? Here, we describe statistical and mathematical

analyses that facilitate epidemic response planning, focusing

on these questions (figure 1). In this section, we take a general

view, as these questions are recurring during most, if not all,

outbreaks. We provide examples from the West African Ebola

epidemic in subsequent sections.
(a) What is the likely public health impact of the
outbreak?

A key issue in the early phase of an epidemic is to determine

the potential impact of the outbreak in terms of clinical severity

and the likely total number of cases over different time periods.
(i) Severity
The severity of a pathogen is often characterized by the case

fatality ratio (CFR), the proportion of cases who die as a

result of their infection. Estimating the CFR during an outbreak

can be challenging due to inconsistent case definitions, incom-

plete case reporting and right-censoring of data [27–29]. In

particular, it is critical to know the proportion of cases for

whom clinical outcome is unknown or has not been recorded,

which is typically easier to assess using detailed case data

rather than aggregated case counts [27]. The CFR may differ

across populations (e.g. age, space, treatment); quantifying

http://rstb.royalsocietypublishing.org/
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Figure 1. Schematic illustrating the data needed to answer questions at different stages of the epidemic to inform the response. Asterisk indicates that analysis is
only possible if aggregate counts are stratified. Footnote: Where two cells in a column are merged, either or both types of data may be used. CFR, case fatality ratio.
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these heterogeneities can help target resources appropriately

and compare different care regimens. For less severe emerging

pathogens, the case definition typically only encompasses a

small fraction of all infected individuals, and hence the infec-

tion fatality rate (i.e. the proportion of infected individuals

who die, rather than the proportion of cases who die—as per

the case definition, which may not be equivalent to infection)

may be a more useful measure of severity [30].
(ii) Short- and long-term incidence projections
Short-term impact of an outbreak can be assessed by predict-

ing the number of cases that will arise in the next few days or

weeks. This is particularly relevant for evaluation of immedi-

ate health-care capacity needs. Projections of future incidence
and estimates of the doubling time (the time taken for the

incidence to double) can be obtained by extrapolating the

early time series of reported cases either obtained from aggre-

gated surveillance data or calculated from individual records

[31]. These projections typically rely on the assumption that

incidence initially grows exponentially [31]. They are subject

to uncertainty, which increases the further one looks into the

future. Quantifying and appropriately reporting such uncer-

tainty and underlying assumptions are crucial [22,25,32,33].

Overstating uncertainty can lead to inappropriately pessi-

mistic projections, which may in turn be detrimental to the

control of the outbreak [34]. On the other hand, understating

uncertainty prevents policymakers from making decisions

based on the whole spectrum of possible impacts. Some

studies have already discussed how to find the balance

http://rstb.royalsocietypublishing.org/
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between these two extremes [35–37]. Here, we propose two

simple rules of thumb for projecting case numbers. First, pro-

jections should not be made for more than two or three

generations of cases into the future. Second, central projec-

tions should be shown together with lower and upper

bounds. In the future, the modelling community should

agree on guidelines for reporting epidemic projections, as

are already in place for reporting experimental studies [38].

A number of factors can lead to incidence not growing

exponentially. In particular, this happens once herd immunity

accumulates, if population behaviour changes or as a result of

the implementation of interventions. Dynamic transmission

models, which account for saturation effects, can be used to

assess the long-term impact of the outbreak such as predicting

the timing and magnitude of the epidemic peak or the attack

rate (final proportion of population infected) [39,40]. However,

these models are hard to parametrize as they require infor-

mation on population size and immunity, interventions

(if any) and potential behavioural changes over time, all of

which may be subject to uncertainty [41,42]. We discuss these

issues in more detail in §3. Projecting longer term is likely to

be associated with a large degree of uncertainty and these pro-

jections may be more useful for evaluating qualitative trends

and evaluating intervention choices rather than predicting

exact case numbers.

(b) How feasible is controlling the outbreak and what
interventions would be appropriate?

Interventions to reduce transmission can include community

mobilization, quarantine, isolation, treatment or vaccination.

The potential success of these interventions is determined

by general characteristics of the disease such as overall

transmissibility and how this varies across populations [43].

Furthermore, certain types of interventions may be more or

less appropriate depending on the natural history of the

disease and the context of the epidemic.

(i) Overall transmissibility
The transmissibility of a pathogen determines the intensity of

interventions needed to achieve epidemic control [44]. The

parameter most often used to quantify transmissibility is

the reproduction number (R), the mean number of secondary

cases infected by a single individual. This parameter has an

intuitive interpretation: if R . 1, then the epidemic is likely

to grow, whereas if R , 1, the epidemic will decline [44,45].

The final attack rate (proportion of the population infected)

of an epidemic also depends on the value of R at the start

of an epidemic (termed R0 if the population has no immu-

nity). R can be estimated from the incidence of reported

cases, given knowledge of the serial interval distribution

(i.e. distribution of time between symptom onset in a case

and symptom onset in his/her infector; see §2b(iii)) [46–49].

(ii) Transmission heterogeneities
Heterogeneity in the number of secondary cases generated by

each infected individual affects epidemic establishment and

the ease of control. Greater heterogeneity reduces the

chance of an outbreak emerging from a single case [50]. How-

ever, this heterogeneity can make an established outbreak

hard to control using mass interventions, as a single uncon-

trolled case can generate a large number of secondary cases
[50]. Conversely, heterogeneity in transmission may provide

opportunities for targeting interventions if the individuals

who contribute more to transmission (because of environ-

mental, behavioural and/or biological factors [51–53]) share

socio-demographic or geographical characteristics that can be

identified [50,54]. Reconstruction of transmission trees (who

infects whom) can provide an understanding of who contrib-

utes more to transmission. This can be done using detailed

case investigations and/or using genetic data [55–58].

Environmental, behavioural and biological factors may

also lead to groups of individuals being disproportionately

more likely to acquire infection (e.g. children during influenza

outbreaks [53,59] or health-care workers (HCWs) during Ebola

outbreaks [60,61]). To identify whether such groups exist and

target them appropriately, the proportion infected in each

group must be estimated. This requires population size esti-

mates for the different groups, which may be difficult to

obtain, as we highlight §3c.

Spatial heterogeneity in transmission is particularly inter-

esting to assess as it can inform the targeting of surveillance

and interventions to the geographical areas most at risk.

Phylo-geographical studies based on genetic data can improve

understanding of the geographical origins of the outbreak,

identify and characterize sub-outbreaks and quantify whether

transmission is very local or travels large distances [22,62,63].

Results of such analyses can be used to determine the appropri-

ate spatial scale of control measures. Spatially explicit epidemic

models can also be used to quantify the risk of exportation

of the infection from one place to another. This can help

public health officials to tailor prevention and control resources

to the level of risk likely to be experienced by a given area.

Such models typically require detailed data on mobility

patterns and immunity levels of the populations in the areas

of interest [64–66].

(iii) Delay distributions
Disease natural history fundamentally affects outbreak

dynamics. The generation time distribution (i.e. distribution of

time between infection of an index case and infection of its sec-

ondary cases) determines—with the reproduction number—the

growth rate of an epidemic [67]. Most commonly, the generation

time distribution is estimated from data on the serial interval

distribution of an infection—the delay between symptom

onset in a case and symptom onset in his/her infector. Other

delays between events in the natural history of infection

(e.g. exposure, onset of symptoms, hospitalization and recovery

or death) also affect disease transmission or have implications

for control [43,67]. Delays from symptom onset to recovery (or

death) will determine the required duration of health-care and

case isolation. The incubation period (the delay between infec-

tion and symptom onset of a case) and the extent to which

infectiousness precedes symptom onset will determine the feasi-

bility and effectiveness of contact tracing or prophylaxis [43].

Estimating these delay distributions requires detailed data on

individual cases and their exposure, e.g. through transmission

pairs identified in household studies [43].

(iv) Intervention choice
Other analyses can also help refine the type of interventions

that should be considered. Ecological associations between

transmissibility (measured by R) at a fine spatio-temporal

scale and any covariate measured at the same scale, may be

http://rstb.royalsocietypublishing.org/
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of interest. For instance, analyses of the West African Ebola

epidemic showed that districts with lower reported funeral

attendance and faster hospitalization experienced lower

transmissibility, highlighting the effectiveness of promoting

safe burials and early hospitalization [10].

However, interpreting the results of such analyses can be

challenging, as they might be prone to bias and confounding.

Efficacy (which measures the impact of an intervention under

ideal and controlled circumstances) and effectiveness (which

measures the impact of an intervention under real-world con-

ditions) of an intervention (e.g. vaccine) are best measured

in a trial setting (either individual- or cluster-randomized

[68–70]). However, performing trials to evaluate the com-

parative impact of different multi-intervention packages is

impractical. Dynamic epidemic models, where the interven-

tions of interest can be explicitly incorporated, allow the

impact of such intervention packages to be predicted [71].

However, outputs of such models are strongly determined

by the underlying assumptions and parameter values.

Hence they require careful parametrization, supported by

data such as intervention efficacy and the size, infectivity,

susceptibility and mixing of different groups [72,73]. These

parameters may not be straightforward to estimate, as we

discuss in §3 using examples from the West African Ebola

epidemic.

Another factor determining the appropriate choice of inter-

ventions is their cost, combinations of interventions with

higher effectiveness at lower cost (i.e. higher cost-effectiveness)

being preferable. Economic analyses combined with math-

ematical models can help to evaluate the optimal resource

allocation among both current available interventions and

potential new interventions, accounting for development and

testing costs for the latter. Indirect costs, e.g. those associated

with a restricted workforce following school closures [74], or

trade limitations from air-travel restrictions [75], also need

to be considered. While economic analyses have played an

important role in designing optimal intervention packages

for endemic diseases such as HIV and malaria [76,77], such

analyses are more difficult to perform during an epidemic,

when cost data might be unavailable and uncertain, costs

may vary rapidly over time and ethical considerations suggest

interventions should be implemented immediately.
(c) Are current interventions effective and could they be
improved?

Tracking changes in estimates of key epidemiological par-

ameters over the course of an outbreak enhances situational

awareness. It also allows the impact of interventions to be

assessed as they are implemented, although disentangling

the effects of different interventions carried out simultaneously

may be challenging.
3. Data requirements
Obtaining reliable estimates of the epidemiological parameters

detailed above requires a wide range of data, such as incidence

time series and detailed case information (figure 1). Here, we

explain how these can be obtained from various sources, with

the objective to help improve data collection systems in prep-

aration for future outbreaks. We use Ebola as a specific example
throughout this section, commenting on the strengths and

limitations of the datacollected during the West African epidemic.

We distinguish data needs at the individual level, the

exposure level and the population level.
(a) Individual-level data: case line-list
Simple analyses can be performed solely using incidence time

series, from surveillance designed to capture aggregate case

counts. However, individual case reports provide much richer

information, essential to estimate many of the key parameters

outlined above (e.g. characterization of delay distributions).

Such data are typically stored in a case database or ‘line-list’—

a table with one line containing individual data for each case.

The more data recorded on each case, the more detailed the ana-

lyses can be. In the Ebola epidemic, demographic characteristics,

spatial location, laboratory results and clinical details such as

symptoms, hospitalization status, treatment and outcome, and

dates associated with these were reported for at least a subset

of cases. The appropriate information to collect may vary

depending on the disease: for Ebola, dates of isolation and fun-

eral were relevant. Comprehensive demographic information

can be used to determine risk factors for transmission or severity

of infection and to project case numbers stratified by demo-

graphic characteristics. Detailed information also helps to

identify and merge any duplicate entries in a line-list, which

may occur when the same person visits multiple health centres

over the course of illness, for instance. Finally, information on

how each case was detected—for example, through hospitaliz-

ation, or via contact tracing—can aid assessment of how

representative the data are and allow subsequent adjustment

for bias [28]; however, this was not available for Ebola.

Cases in the line-list should be classified using standar-

dized case definitions, which is sometimes difficult for

outbreaks of new pathogens, or where different case defi-

nitions are provided by different organizations (e.g. World

Health Organization (WHO) and US Centers for Disease

Control and Prevention (CDC)) [78]. For the Ebola response,

although the WHO released official case definitions of con-

firmed, probable and suspected Ebola cases [79], different

countries adopted different testing strategies, thereby limiting

the opportunity for inter-country comparison. For example,

in Guinea deceased individuals were not tested for Ebola,

meaning these individuals were never classified as confirmed

cases, unlike in Liberia and Sierra Leone. Encouraging use of

a consistent testing protocol and case definition, and ensuring

transparency in what is used where and when, would

improve the validity of subsequent analyses.
Laboratory testing of clinical specimens is key for confirm-

ing cases and test results should be linked to the line-list.

Understanding diagnostic test performance in field conditions

is important; cross-validation of diagnostic sensitivity and

specificity between laboratories is useful to assess the extent

to which observed differences in case incidence may be

explained by variations in laboratory conditions and practices.

In addition, recording raw test results with the case classi-

fication may help evaluation of diagnostic performance.

Ebola cases were defined as confirmed cases once Ebola

virus RNA was isolated from clinical specimens using reverse

transcription polymerase chain reaction (RT-PCR [79]).

Within each of the main affected countries, field laboratories

were established [80,81] to enable prompt diagnosis of cases.

Recent evidence suggests that the large fluctuations in

http://rstb.royalsocietypublishing.org/
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temperature and humidity to which these laboratories were

subjected reduced the test performance compared with

manufacturer evaluation reports [82].

During the West African Ebola epidemic, the case line-list

contained a large quantity of data collected from reported

cases. The information allowed estimation of the CFR, the

incubation period distribution (and evaluation of differences

in these by age and gender) and the reproduction number

[3,4,6]. Projections of the likely scale of the outbreak were also

made, either from the line-list or from aggregated case counts

[3,8,83,84]. There were regular data updates [5], with a total of

over 19 000 confirmed and probable cases reported, which

allowed analyses to be updated as more data became available.

(b) Exposure-level data
Data on exposures allow cases to be linked to their potential

sources of infection, and hence provide a better understanding

of transmission characteristics.

(i) Transmission pairs
The relevant modes (e.g. airborne, foodborne) and pathways

(e.g. animal–human, human–human) of transmission may be

identified using information on exposure reported by cases.

Cases can report contact both with sick individuals (their poten-

tial source of infection) and healthy individuals they have

contacted since becoming ill (who may need to be traced and

monitored as potential new cases). These data will be more

informative if the majority of infections are symptomatic (and

hence easily identifiable), if individuals are mostly infectious

after the onset of symptoms [43] and if the time window over

which exposures and contacts are monitored is as long as the

upper bound of the incubation period distribution. If exposure

information is collected with enough demographic information

to allow record linkage, these backward and forward contacts

can be identified in the case line-list, defining transmission

pairs. Depending on the mutation rate of the pathogen, genetic

data can also be used to identify or confirm these epidemiologi-

cal links [56,85]. The increasing availability of full genome

pathogen sequences offers exciting prospects in that respect.

Some genetic sequence information was available during the

Ebola epidemic, but most sequences could not be linked to

case records, limiting the use of sequence data in this context.

On the other hand, individuals who were named as potential

sources of infection could often be identified in the case line-

list, although this process was hindered by non-unique names

and limited demographic information collected on the potential

sources [10]. These exposure data were used to characterize

variation in transmission over the course of infection [10], and

to estimate the serial interval and the incubation period [3].

The upper bound of the incubation period distribution was esti-

mated to be 21 days [3], which supported monitoring contacts

for up to three weeks.

(ii) Transmission studies
Studies of transmission in well-defined, small settings such as

households are useful to quantify asymptomatic transmission,

infectivity over time and the serial interval as they capture

explicitly the number and timing of secondary cases. Addition-

ally, these studies can estimate the secondary attack rate (the

proportion of contacts of a case who become infected within

one incubation period), which can be used to characterize het-

erogeneities in transmission of different groups [59]. Estimates
of the secondary attack rate have been obtained for the West

African Ebola epidemic by reconstructing household data

based on information reported by cases, in particular, as part

of contact-tracing activities [86,87].

(c) Population-level or metadata
Although they might not immediately appear as useful as

individual- or exposure-level data, metadata are crucial for

answering many public health questions.

(i) Population sizes
Knowing the sizes of affected populations is important for

quantifying the attack rate and informing dynamic trans-

mission models. Census data are likely to be the most

reliable source, but may be infrequently collected. Methods

based on interpreting satellite imagery [88,89] can inform

population size and structure, although demographic stratifi-

cations are not always available. For the West African Ebola

epidemic, the most recently available age- and gender-

stratified population census data were from 1996 in Guinea

[90], 2004 in Sierra Leone [91] and 2008 in Liberia [92].

A particular population of interest is HCWs who, due to

their contact with patients, are often at high risk of infection

and may also be high-risk transmitters. Large numbers of

HCWs were infected during the West African Ebola epidemic

[60,61]. However, the proportion of HCWs affected at different

stages of the outbreak and the relative risk of acquisition for the

HCWs compared with the general population could not be

estimated since the total number of HCWs was not systemati-

cally reported and changed during the course of the outbreak

with the scale-up of interventions. Note that, depending on

the transmission route, the definition of HCWs may need to

include anyone working in a health-care setting who could

be at risk (e.g. cleaners may be exposed to bodily fluids).

(ii) Mobility
Characterizing population movement is crucial to assessing

the risk of exportation of the infection from one place to

another. Air-travel data are the most reliable, consistently

available and commonly used data source to inform models

of long-distance spread [93]. Such data were widely used

during the West African Ebola epidemic to quantify the

risk of international spread of the disease, and to assess the

potential impact of airport screening and travel restrictions

on the outbreak [9,94–96].

However, air travel does not cover other population move-

ments that may play an important role in disease spread, e.g.

travel by road or on foot in Guinea, Liberia and Sierra Leone

and across the porous country borders during the West African

Ebola epidemic [97]. Usually, little data are available to directly

characterize these typically smaller-scale movements. Gravity

models, which assume that connectivity between two places

depends on their population sizes and the distance between

them, can be used to quantifyspatial connectivity between differ-

ent regions [98–101], and have proved useful to predict local

epidemic spread, e.g. for Chikungunya [98]. Such models require

data on population sizes and geographical distances.

Recently, mobile phone data have been explored as an

alternative source of data on mobility patterns, which could

be used to predict spatial epidemic spread [102–104]. How-

ever, a number of challenges (in particular related to

privacy issues) meant that such data were unavailable to
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understand the regional and local spread of the West African

Ebola epidemic [105]. In addition, inter-country movement is

not captured from these data. At a national level, the utility of

mobile phone data may depend on whether mobile phone

users are representative of the population contributing to

transmission, the level of mobile phone coverage in the

affected population and whether population movement is

likely to remain the same during an epidemic compared to

the time period of the data.

(iii) Seroprevalence
Assessing seroprevalence in a population affected by an out-

break can provide valuable information on the underlying

scale of population exposure and insight into how interven-

tions might be targeted. For instance, if there is pre-existing

population immunity prior to an outbreak that varies with

age (as was the case in the 2009 H1N1 influenza pandemic),

vaccination could be targeted at those with lower pre-existing

immunity. Dynamic transmission models incorporating such

differences in susceptibility can be used to explore different

targeting strategies [106].

Ideally, serological surveys would be undertaken to quan-

tify seroprevalence [107]; however, they are expensive and not

performed on a regular basis. In the absence of such data, infor-

mation on historical outbreaks and vaccine use can sometimes

be used to infer seroprevalence [108]. Serological studies

performed before and after an epidemic can also be useful to

measure the attack rate and the scale of the outbreak, and

hence provide information on the level of underreporting

during the outbreak [109].

It was widely assumed that the population in West Africa

was entirely susceptible to Ebola at the start of this outbreak,

with no known previous outbreaks in the area. However,

some studies have suggested that there might have been

low levels of prior immunity [110].

(iv) Recording intervention efforts across time and space
During an outbreak, multiple interventions are often imple-

mented by different groups and organizations. Evaluating

the role of interventions in interrupting transmission is impor-

tant for revising and improving efforts, but it is challenging

without detailed quantitative information of what has been

implemented where and when [111,112]. Maintaining a

systematic real-time record of the different interventions at a

fine spatio-temporal scale would help, e.g. the number and

location of health-care facilities and their personnel, number

of beds, vaccine or treatment coverage and details of local com-

munity mobilization. Developing centralized platforms to

routinely record such data once a large-scale outbreak is under-

way is probably unfeasible. However, developing such tools in

advance of outbreaks (such as those developed for the Global

Polio Eradication Initiative [113] and those recently developed

to collect health-care facility data [114]) should be a priority

since better information to evaluate intervention policies in

real time will allow for more optimal resource allocation.

During the West African Ebola epidemic, many data on

interventions were recorded at a local level by some of the

numerous partners (e.g. non-governmental organizations

(NGOs) and other organizations) involved in the response.

For example, some data were collected on the number and

capacity of hospitals over time [115] and these were used in

a study modelling community transmission to assess the
impact of increasing hospital bed capacity [116]. However,

the decentralization of the response meant that intervention

data were not systematically reported or collated and these

data were not shared widely with the research community. A

failure to report interventions centrally and systematically

can make it difficult to disentangle a lack of intervention

effect from a lack of intervention implementation. This can par-

ticularly be a problem when numerous groups coordinate their

own efforts, making it impossible to draw firm conclusions

about interventions. In the absence of detailed data on inter-

vention efforts in West Africa, multiple studies have assessed

the combined impact of all interventions in place, by compar-

ing transmissibility in the early phase (with no intervention)

to that in the later phases [87,117]. However, this approach pro-

vides less compelling evidence of a causal effect and does not

disentangle the impact of different interventions performed

at the same time, and hence is less informative for future

response planning.

(v) Quantifying intervention efficacy
Vaccine or treatment trials together with case–control and

cohort studies can be useful in assessing the impact of an inter-

vention. For example, during the West African Ebola epidemic

there was an urgent need to estimate the efficacy of newly devel-

oped vaccines. Trials such as the Guinea Ebola ça suffit vaccine

trial [118] provided key data on the effectiveness of the rVSV-

ZEBOV Ebola vaccine [119,120]. These trials occurred at the

tail end of the epidemic and results will be useful in future out-

breaks. Statistical power from trials will be maximized by

implementing such studies as early as possible in future out-

breaks. This will be facilitated if research on diagnostics,

drugs and vaccines is promoted between, and not only

during, outbreaks, e.g. through new initiatives such as the

Coalition for Epidemic Preparedness Innovation [121].

(vi) Quantifying data completeness and timeliness
All of the data sources mentioned above are inevitably imperfect;

what they are trying to measure is different from what they

measure in practice. Quantifying the mismatch between the

two is vital to appropriately account for these imperfections.

For instance, case line-lists are likely to contain information

on only a proportion of all infected individuals: typically those

with symptoms, or those who sought care. The level of report-

ing may also be influenced by the capacity of the local health

systems, which can vary over time and space. During the

West African Ebola epidemic, less than a third of cases were

estimated to be reported [122] and severe cases were probably

over-represented compared to mild cases. At the end of 2014,

health-care capacity was exceeded in many parts of Guinea,

Liberia and Sierra Leone [14], but new health-care facilities

were subsequently built; hence the line-list of cases is likely

to be more complete towards the end of the outbreak. Under-

reporting might also have been higher in this compared to

previous Ebola outbreaks, during which the health-care sys-

tems were less overburdened. Systematic evaluation of the

surveillance system [123] over different spatial units and time

periods could help inform the level of underreporting. In

addition, joint analysis of genetic sequence and surveillance

data can provide insight into the degree of underreporting

[124]. Quantifying completeness of, and potential biases in

the line-list is important, e.g. to adequately quantify the CFR

[28]. Although differences in the CFR were observed across
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different health-care facilities in the West African Ebola epi-

demic, it was not possible to determine whether these were

due to reporting differences or underlying differences between

settings [125].

Similarly, exposure-level data can be incomplete, depending

on the available capacity (personnel and resources) to perform

contact tracing and the willingness of people to share infor-

mation on their contacts. Complete data can be used to assess

the route of transmission—animal to human or human to

human—and the number of cases imported from other locations.

If data are incomplete, these estimates may be incorrect.

Population-level data may suffer the same issues. For

instance, the recording of intervention efforts (e.g. the

number of personal protection equipment (PPE) kits distribu-

ted) can differ from the reality of the intervention (e.g. the

number of people who used PPE in practice). Quantifying

this mismatch is crucial to evaluating the impact of various

interventions, and requires dedicated studies, with both quali-

tative and quantitative components, on the acceptability of and

the adherence to given interventions. Such studies have been

carried out in the past, e.g. to assess the potential impact of

face masks on the risk of influenza transmission in households,

or of condom use on the risk of HIV transmission [126–128].

It is also important to quantify delays encountered in the

reporting of cases [129]. During the West African Ebola epi-

demic, there were delays in all databases and disparities

between different data sources. In particular, comparison

between the line-list of cases and aggregated daily case

counts reported by the affected countries highlighted report-

ing delays in the line-list. As a result, at any point in the

outbreak, naive time series of case counts derived from the

line-list suggested that the epidemic was declining, due to

right-censoring. Comparison between the line-list and

reported aggregated case counts (which were more up-to-

date) and between successive versions of the line-list allowed

the reporting delays to be quantified. Analyses such as the

projected incidence could then be adjusted accordingly [5].
4. Successes and challenges in data collection
and analyses during the West African Ebola
epidemic

In summary, the enormous quantity of detailed data collected

during the West African Ebola epidemic played an invaluable

role in guiding response efforts. However, several analyses

could not be performed. Early on, severity, transmissibility

and delay distributions were quantified and short-term projec-

tions were made, based on the case line-list and/or contact

tracing data [3,5,7]. Some heterogeneity in severity and trans-

missibility could be identified (e.g. by age and viraemia

[7,10,116,125,130–132]), but other types of heterogeneity

could not be assessed. For example, it was not possible to com-

pare the CFR between hospitalized and non-hospitalized cases,

because of biases in the way cases were recorded in the line-list

[28]. Long-term projections were extremely challenging due to

large uncertainty in population sizes, behaviour changes and

changing intervention efforts. In addition, the relative risk of

Ebola acquisition for HCWs was difficult to estimate due to

the absence of reliable spatio-temporal data on the number of

HCWs. Finally, systematic evaluation of interventions was

not feasible due to multiple control measures being carried
out at the same time, with little central recording of details of

each intervention.
5. Optimizing data quality
Data collection during the West African Ebola epidemic was

possible, in part, due to a pre-existing case investigation form

and data management system (Epi Info viral haemorrhagic

fever (VHF) application [133,134]). For outbreaks of new

pathogens, such systems are not usually in place. The list of

data needs we have outlined above, based on our experience

during the Ebola epidemic, could serve as a basis for data col-

lection in future outbreaks. Here we outline improvements that

could be made to streamline data collection, minimize delays

between data collection and data dissemination, and improve

data quality during future outbreaks. All of these are necessary

for timely analysis to inform the response in real time. We

consider this particularly for line-list and exposure data.
(a) Streamlining data collection and digitalization
Data need to be digitized before they can be analysed;

streamlining this process reduces the potential for delays and

errors. Using electronic data capture on tablets or phones

may reduce delays and errors compared with using paper

forms that then require manual digitization, with its

contingent issues [135–138]. Electronic questionnaires may

not be available at the start of the epidemic, but could be

quickly adopted using available tools (e.g. EpiCollect [139] or

EpiBasket [140]). Interpretation problems (e.g. abbreviations)

and spelling errors could also be minimized at the data collec-

tion level by using multiple choice questions rather than free

text and at the data entry level by using drop-down menus.

For example, for spatial information the choices could be the

standard administrative levels used in the country—such as

district or county. As response efforts evolve over time, such

as the building of new treatment centres, the lists would be

updated as required. Similarly, using pop-out calendars to

select dates would limit typing errors. Additionally, internal

consistency checks could flag problems such as the recorded

date of death being before that of symptom onset, and the

system could force a manual check before the record is saved.

In the West African Ebola epidemic, data were collected

using paper forms (electronic supplementary material,

figures S1–S3) and manually entered into an electronic

system at local operation centres. Data entry problems were

particularly noticeable in clinical dates and free text variables,

such as district locations and hospital names, and required

considerable cleaning (e.g. to correct spelling errors) [3,5,10].
(b) Ensuring adequate logistical resources and training
With any data system there is potential for delays in data entry

and dissemination due to limitations in personnel and hard-

ware, and logistical constraints in data delivery (e.g. reliable

electricity, Internet access and transport). Although the latter

limitations are arguably outside the scope of outbreak control,

delays from data collection to dissemination could be reduced

by increasing training in data entry and providing more data

entry facilities where possible. Delays in data entry and release

during the Ebola epidemic meant that real-time analyses of the

line-list data could not be performed on fully up-to-date data.
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(c) Acknowledging the international nature of the
threat

In the world today, an epidemic emerging anywhere is a

global threat due to high population connectivity [141,142]

and, as such, a response will have to operate across multiple

languages. Ideally, the same data entry system would be used

in every affected country to allow easy collation into a single

case line-list. However, a global response requires careful trans-

lation of the questions and the system to ensure they make sense

and are identical in every language. Additionally, different

languages, dialects or alphabets could be challenging due to

differing pronunciations, accents, alternate names or spellings,

and these should be acknowledged in the form design. The

language barrier was not a major problem during the Ebola

response: Guinea had a form in French, while in Sierra Leone

and Liberia the form was in English, though there were some

minor differences in formulations between the two (for example

the English version of the form asked ‘In the past one month

prior to symptom onset: did the patient have contact with

(. . .) any sick person before becoming ill’ (see §4 in the form

in electronic supplementary material, figure S1), while the

French form did not specify ‘before becoming ill’).

(d) Improving harmonization between databases
Analysis of laboratory results and sequence data can be much

more powerful if they can be dated and linked to the epide-

miological data recorded for each case. In the early stages

of the Ebola response, there were reports that laboratory

results could not always be linked to case records as labels

were incorrectly written or damaged in transit [81]. Later in

the epidemic, case report forms came with pre-printed

unique ID barcode stickers to label all records and samples

for each case (electronic supplementary material, Form S2).

This would be useful if implemented early in future out-

breaks, particularly if laboratory tests are not performed at

the point of care. Rapid diagnostic tests were developed

during the West African Ebola epidemic but not used

widely [143,144]; similarly, mobile sequence tests were intro-

duced later in the epidemic [145]: both of these would reduce

delays and maximize the potential to link patient data.
6. Data availability
We have described a set of data needed to perform analyses

to inform the public health response during an outbreak. We

have proposed strategies to ensure fast and high-quality data

collection, to enable robust and timely analyses. However,

such analyses can only be performed if the data are accessible

to data analysts and modellers.

(a) Data access
The West African Ebola epidemic has prompted an ongoing

public debate about the ethical, practical and scientific

implications of wide data access [14,146–148]. Ethical con-

siderations require removal of data that might compromise

anonymity, but such detailed information might be required

to answer important public health questions. Mechanisms

also need to be found to appropriately acknowledge those

who collected and digitalized the data. From a scientific

perspective, having several groups analysing the data is
desirable, as independent analyses leading to similar results

will reinforce their utility for policymaking [3,8]. Such paralle-

lized efforts have been formalized through consortiums of

highly experienced groups, e.g. for modelling of HIV [149],

influenza [150,151] and malaria [152]. However, if results

differ, understanding what assumptions drive these differ-

ences may confuse and delay the process of decision-making.

A consequence of data sharing, therefore, needs to be an

increased emphasis on evidence synthesis, such as systematic

reviews of the different analyses. To enable this process,

groups should explicitly state all assumptions underlying

their analyses and which data they are based on. Like the orig-

inal analyses, reviews need to be timely to be useful. These

issues have partly been addressed through new data avail-

ability policies [153]. Furthermore, this process would ideally

be performed by a group independent of those performing

the primary analyses. Identifying an effective system, appro-

priate personnel and appropriate recognition for this

important role needs to be planned in advance of future

outbreaks.

(b) Data curating and data cleaning
Data from the West African Ebola epidemic required significant

cleaning before it could be analysed, and this was necessary for

every updated dataset, i.e. every few days during the peak.

Were outbreak data to be shared more widely, collaborative

or centralized cleaning would be optimal, to avoid repetition

and ensure consistency across different groups. If a centralized

effort was not possible, regular sharing of the cleaning code and

cleaned datasets between groups would facilitate comparison

of results. Even better, code could be shared on a collaborative

platform such as Github (https://github.com/), leading to a

common clean dataset being actively maintained by the scien-

tific community. However, for this process to be effective, a

set of best practices would need to be established in advance,

such as designing a transparent workflow, establishing a fair

distribution of tasks and clarifying how credit will be given

for this (often lengthy) task. This is important to avoid dupli-

cation of effort and allow effective collaboration. As the

process of data sharing is debated further, it is critical that the

practicalities of data cleaning are discussed in parallel. Based

on our experience, a centralized cleaning platform would be

the most effective method.

(c) Disseminating results of data analyses
Finally, analyses will be most useful if they are shared widely

across policymakers, local health teams and other research

groups. The format for dissemination could be anything from

a report to a scientific publication. Reports can be made available

faster and regularly updated but do not undergo the peer review

process of publications. Peer review can delay publication,

though there are now new platforms for fast-tracking this pro-

cess [154,155]. At the time of writing, as interest in Zika virus

is gaining momentum, there seems to be an encouraging trend

to the use of pre-print servers [156,157].
7. Discussion
By the very nature of emerging infectious diseases, we do

not know which pathogen will emerge next, when or

where. There have been many suggestions about how to be
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https://github.com/
http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160371

10

 on March 28, 2018http://rstb.royalsocietypublishing.org/Downloaded from 
better prepared [11–21,24,26]; here, we argue that prepared-

ness should include development of a broad-use data

collection system that can be easily and quickly adapted to

any disease (in agreement with [11]) as well as the regular

collection of population health data in centralized systems.

Different infectious diseases may require different types of

data [140]: a single approach is not applicable to all diseases.

In particular, different interventions may need to be recorded

for different diseases.

Data collection and management may need to evolve as

the outbreak progresses and/or as more is learnt about the

pathogen: the Ebola data collection forms changed late in

2014 to streamline collection and entry when the response

effort was almost overwhelmed with cases (electronic sup-

plementary material, figures S1 and S2). Similarly, both for

Ebola and the recent Zika outbreak, reports of sexual trans-

mission have led to a broadening of the contact tracing and

exposure information collected.

The data collected during the Ebola epidemic allowed

many analyses to be performed, which informed the response.

However, as in many outbreak situations, it has not been

possible to systematically quantify the relative contribution of

different interventions (such as safe burials, hospitalization,

contact tracing and community mobilization) in reducing

transmission. This is because data on where and when these

interventions took place were not centrally recorded and

released in a timely fashion. Efforts have been made to collate

some information from Sierra Leone, Liberia and Guinea [115];

however, this commenced late in the epidemic. As this effort

relies on different organizations to contribute data, the sub-

missions are in different formats and are unlikely to provide

comprehensive information. In the midst of a global public

health crisis resources are often deployed favouring implemen-

tation rather than documentation of interventions. However,

we would argue that securing some resources to monitor inter-

ventions—especially during the early stages—is critical to

optimally prioritizing future control efforts.

Some of the data we have suggested to be collected during

outbreaks may not be obviously useful at the field or case

management level, e.g. detailed demographic characteristics

of cases and contacts. Collecting such data costs money and

time as well as trained personnel. These three ‘resources’ are

limited and, during an epidemic, should be prioritized where
their need is greatest. However, from a population perspective,

collecting these data may help quantify epidemic impact, assist

in the design and evaluation of interventions, and help prevent

new infections. Further studies might examine how to appro-

priately balance these two considerations.

We have built on the Ebola experience to draw up a list of

the data needed to assist the response throughout an epi-

demic, which should help to collect relevant data in a

standardized effort in future epidemics. To make the most

of these data, epidemiologists and modellers should work

now to develop tools to automatically clean, analyse and

report on the data in a more timely and robust manner

[158]. Based on critical review of past outbreak analyses,

future studies could flag common methodological mistakes

and propose good practice [159]. This includes clearly stating

all assumptions underlying a model or analysis and ensuring

that parametrization is either directly informed by relevant

data or has appropriate sensitivity analyses, with correspond-

ing uncertainty clearly reported [32,160].

Improving our ability to respond effectively to the next out-

break will require collaboration between all parties involved in

outbreak response: those in the field, epidemiologists, model-

lers and policymakers as well as the populations affected.

Here we have given the data analyst perspective on what

data are required to answer important policy questions. It is

equally important that other perspectives should be heard to

be better prepared for and improve interactions during crises,

thereby minimizing the impact of future outbreaks.
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