
Introduction to REST APIs
Web APIs use HTTP to communicate between client and server.

REST APIs with plumber: : CHEAT SHEET

Filters can forward requests (after potentially mutating them), throw
errors, or return a response without forwarding the request. Filters
are defined similarly to endpoints using the @filter [name]
tag. By default, filters apply to all endpoints. Endpoints can opt out
of filters using the @preempt tag.

Documentation

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at www.rplumber.io • plumber 1.1.0 • Updated: 2021-03

HTTP

HTTP is built around a request and a response. A client makes a
request to a server, which handles the request and provides a
response. Requests and responses are specially formatted text
containing details and data about the exchange between client and
server.
REQUEST

RESPONSE

Plumber APIs can be run programmatically
from within an R session.

Running Plumber APIs

Interact with the API

Plumber pipeline

Endpoints define the R code that is executed in response to
incoming requests. These endpoints correspond to HTTP methods
and respond to incoming requests that match the defined method.
METHODS

IDE INTEGRATION

Once the API is running, it can be interacted with using any HTTP
client. Note that using httr requires using a separate R session
from the one serving the API.

Plumber endpoints contain R code that is executed in response to an
HTTP request. Incoming requests pass through a set of mechanisms
before a response is returned to the client.

�
server

�
client

HTTP
request

response

#< HTTP/1.1 200 OK
#< Connection: keep-alive
#< Date: Thu, 02 Aug 2018 18:22:22 GMT

Response Body

HTTP Version Status code
Reason phrase

Headers

Message body

curl -v “http://httpbin.org/get”

#> GET / get HTTP/1.1
#> Host: httpbin.org
#> User-Agent: curl/7.55.1
#> Accept: */*

Request Body

HTTP Method

Path

HTTP Version
Headers

Message body

Plumber uses special comments to turn any arbitrary R code into API
endpoints. The example below defines a function that takes the msg
argument and returns it embedded in additional text.

• @get - request a resource
• @post - send data in body
• @put - store / update data
• @delete - delete resource

• @head - no request body
• @options - describe options
• @patch - partial changes
• @use - use all methods

library(plumber)

#* @filter log
function(req, res) {
 print(req$HTTP_USER_AGENT)
 forward()
}

#* Convert request body to uppercase
#* @preempt log
#* @parser json
#* @post /uppercase
#* @serializer json
function(req, res) {
 toupper(req$body)
}

Endpoint
description

Serializer

HTTP Method
Endpoint path

Serializers determine how Plumber returns results to the client. By
default Plumber serializes the R object returned into JavaScript
Object Notation (JSON). Other serializers, including custom
serializers, are identified using the @serializer
[serializer name] tag. All registered serializers can be
viewed with registered_serializers().

library(plumber)

plumb("plumber.R") %>%
 pr_run(port = 5762)

This runs the API on the host machine supported by the current R
session.

Path to API definition

Run API in
current R session

Publish API to
RStudio Connect

Create new
Plumber API

Plumber APIs automatically generate an OpenAPI specification file.
This specification file can be interpreted to generate a dynamic
user-interface for the API. The default interface is generated via
Swagger.

(resp <- httr::GET("localhost:5762/echo?msg=Hello"))
#> Response [http://localhost:5762/echo?msg=Hello]
#> Date: 2018-08-07 20:06
#> Status: 200
#> Content-Type: application/json
#> Size: 35 B
httr::content(resp, as = "text")
#> [1] "{\"msg\":[\"The message is: 'Hello'\"]}"

library(plumber)

#* @apiTitle Plumber Example API

#* Echo back the input
#* @param msg The message to echo
#* @get /echo
function(msg = "") {
 list(
 msg = paste0(
 "The message is: '", msg, "'")
)
}

@ decorators
define API

characteristics

/<path> is used to
define the location

of the endpoint

Plumber
comments

begin with #*

HTTP Method

Identify as
filter

Forward
request

Filter name

Plumber: Build APIs with R

Specify API
port

Endpoint details

curl command used to
send request

Parameter details Edit parameters

Send request

FILTERS

PARSER

ENDPOINT

SERIALIZER

Parsers determine how Plumber parses the incoming request body.
By default Plumber parses the request body as JavaScript Object
Notation (JSON). Other parsers, including custom parsers, are
identified using the @parser [parser name] tag. All
registered parsers can be viewed with registered_parsers().

Parser
Opt out of

the log filter

mailto:info@posit.co
http://posit.co
http://www.rplumber.io

Once Plumber APIs have been
developed, they often need to be
deployed somewhere to be useful.
Plumber APIs can be deployed in a
variety of different ways. One of the
easiest way to deploy Plumber APIs is using RStudio Connect,
which supports push button publishing from the RStudio IDE.

Advanced Plumber

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at www.rplumber.io • plumber 1.1.0 • Updated: 2021-03

REQUEST and RESPONSE

Deploying Plumber APIs

Plumber automatically creates an OpenAPI specification file based on
Plumber comments. This file can be further modified using
pr_set_api_spec() with either a function that modifies the
existing specification or a path to a .yaml or .json specification file.

Plumber provides access to special req and res objects that can
be passed to Plumber functions. These objects provide access to the
request submitted by the client and the response that will be sent to
the client. Each object has several components, the most helpful of
which are outlined below:

library(plumber)

#* @plumber
function(pr) {
 pr %>%
 pr_get(path = "/echo",
 handler = function(msg = "") {
 list(msg = paste0(
 "The message is: '",
 msg,
 "'")
)
 }) %>%
 pr_get(path = "/plot",
 handler = function() {
 rand <- rnorm(100)
 hist(rand)
 },
 serializer = serializer_png()) %>%
 pr_post(path = "/sum",
 handler = function(a, b) {
 as.numeric(a) + as.numeric(b)
 })
}

Use @plumber tag

Function that accepts and
modifies a plumber router

“Tidy” functions
for building out

Plumber API

Name Example Description

req

req$pr plumber::pr()
The Plumber router
processing the request

req$body list(a=1)
Typically the same as
argsBody

req$argsBody list(a=1)
The parsed body
output

req$argsPath list(c=3)
The values of the path
arguments

req$argsQuery list(e=5)
The parsed output from
req$QUERY_STRING

req$cookies list(cook = "a") A list of cookies

req$REQUEST_METHOD "GET"
The method used for
the HTTP request

req$PATH_INFO "/"
The path of the
incoming HTTP request

req$HTTP_* "HTTP_USER_AGENT"
All of the HTTP headers
sent with the request

req$bodyRaw charToRaw("a=1")
The raw() contents of
the request body

res

res$headers
list(header =
"abc")

HTTP headers to
include in the response

res$setHeader()
setHeader("foo",
"bar")

Sets an HTTP header

res$setCookie()
setCookie("foo",
"bar")

Sets an HTTP cookie on
the client

res$removeCookie removeCookie("foo")
Removes an HTTP
cookie

res$body "{\"a\":[1]}" Serialized output

res$status 200
The response HTTP
status code

res$toResponse() toResponse()
A list of status,
headers, and body

OpenAPI

Tidy Plumber

library(plumber)

#* @param msg The message to echo
#* @get /echo
function(msg = "") {
 list(
 msg = paste0(
 "The message is: '", msg, "'")
)
}

#* @plumber
function(pr) {
 pr %>%
 pr_set_api_spec(function(spec) {
 spec$paths[["/echo"]]$get$summary <-
 "Echo back the input"
 spec
 })
}

By default, Swagger is used to interpret the OpenAPI specification file
and generate the user interface for the API. Other interpreters can be
used to adjust the look and feel of the user interface via
pr_set_docs().

Programmatic Plumber

Plumber is exceptionally customizable. In addition to using special
comments to create APIs, APIs can be created entirely programatically.
This exposes additional features and functionality. Plumber has a
convenient “tidy” interface that allows API routers to be built piece by
piece. The following example is part of a standard plumber.R file.

Function that receives
and modifies the existing

specification

ASYNC PLUMBER
Plumber supports asynchronous execution via
the future R package. This pattern allows
Plumber to concurrently process multiple
requests.

library(plumber)
future::plan("multisession")

#* @get /slow
function() {
 promises::future_promise({
 slow_calc()
 })
}

Slow calculation

Set the execution
plan

MOUNTING ROUTERS
Plumber routers can be combined by mounting routers into other
routers. This can be beneficial when building routers that involve
several different endpoints and you want to break each component
out into a separate router. These separate routers can even be
separate files loaded using plumb().

library(plumber)

route <- pr() %>%
 pr_get("/foo", function() "foo")

#* @plumber
function(pr) {
 pr %>%
 pr_mount("/bar", route)
}

Mount one router
into another

Create an initial
router

RUNNING EXAMPLES
Some packages, like the Plumber package itself, may include
example Plumber APIs. Available APIs can be viewed using
available_apis(). These example APIs can be run with
plumb_api() combined with pr_run().

library(plumber)

plumb_api(package = "plumber",
 name = "01-append",
 edit = TRUE) %>%
 pr_run()

Identify the
package name and

API name

Optionally open the
file for editingRun the example

API

Return the updated
specification

In the above example, the final route is /bar/foo.

mailto:info@posit.co
http://posit.co
http://www.rplumber.io

