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Preface
The following provides a brief introduction to generalized additive
models and some thoughts on getting started within the R environ-
ment. It doesn’t assume much more than a basic exposure to regres-
sion, and maybe a general idea of R though not necessarily any partic-
ular expertise. The presentation is of a very applied nature, and such
that the topics build upon the familiar and generalize to the less so,
with the hope that one can bring the concepts they are comfortable
with to the new material. The audience in mind is a researcher with
typical social science training, though is not specific to those disciplines
alone.

To familiarize yourself with R, I have an introduction to R here
and second part here, and they would provide all one would need for
the following, though there is much to be gained from simple web
browsing on R. And while it wasn’t the intention starting out, this
document could be seen as a vignette for the mgcv package, which is
highly recommended.

With regard to the text, functions are in red text, packages in blue,
and links are sort of orange. With regard to the graphs, they are meant
to be zoomed in upon, and you can do so without loss of clarity. Hav-
ing them smaller and in the margins allows the reader to focus on
them as much or little as you like as one would like while having them
right where they need to be in relation to the text (for the most part).
If using Adobe reader, I usually have to turn off ’enhance thin lines’
in preferences in order to see the graphs as they are originally con-
structed, but other readers should be fine.

This document was created within Rstudio with the knitr package. . Last modified June 27, 2014. Original
draft August, 2012.

http://www.nd.edu/~mclark19/learn/Introduction_to_R.pdf
http://www.nd.edu/~mclark19/learn/Introduction_to_R_II.pdf
http://rstudio.org/
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Introduction
Beyond the General Linear Model I

General Linear Model

LET US BEGIN by considering the standard ordinary least squares
(OLS) linear regression model. We have some response/variable we
wish to study, and believe it to be some function of other variables.
In the margin to the right, y is the variable of interest, assumed to y ∼ N (µ, σ2)

µ = b0 + b1X1 + b2X2... + bpXpbe normally distributed with mean µ and variance σ2, and the Xs are
the predictor variables/covariates in this scenario. The predictors are
multiplied by the coefficients (beta) and summed, giving us the linear
predictor, which in this case also directly provides us the estimated
fitted values.

And since we’ll be using R and might as well get into that mindset,
I’ll give an example of how the R code might look like.

mymod = lm(y ~ x1 + x2, data=mydata)

One of the issues with this model is that, in its basic form it can be
very limiting in its assumptions about the data generating process for
the variable we wish to study. Also, while the above is one variant of
the usual of the manner in which it is presented in introductory texts,
it also very typically will not capture what is going on in a great many
data situations.

Generalized Linear Model

In that light, we may consider the generalized linear model. General-
ized linear models incorporate other types of distributions1, and in- 1 Of the exponential family.

clude a link function g(.) relating the mean µ, or stated differently, the
estimated fitted values E(y), to the linear predictor Xβ, often denoted
η. The general form is thus g(µ) = Xβ.

g(µ) = Xβ

g(µ) = η

E(y) = µ = g−1(η)

Consider again the typical linear regression. We assume a Gaussian
(i.e. Normal) distribution for the response, we assume equal variance
for all observations, and that there is a direct link of the linear predic-
tor and the expected value µ, i.e. Xβ = µ. In fact the typical linear
regression model is a generalized linear model with a Gaussian distri-
bution and identity link function.

To further illustrate the generalization, we consider a distribution
other than the Gaussian. In the example to the right, we examine a
Poisson distribution for some vector of count data. There is only one

y ∼ P(µ)
g(µ) = b0 + b1X1 + b2X2... + bpXp

parameter to be considered, µ, since for the Poisson the mean and
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variance are equal. For the Poisson, the (canonical) link function g(.),
is the natural log, and so relates the log of µ to the linear predictor. As
such we could also write it in terms of exponentiating the right hand
side.

µ = eb0+b1X1+b2X2 ...+bp XpWhile there is a great deal to further explore with regard to gen-
eralized linear models, the point here is to simply to note them as a
generalization of the typical linear model with which all would be fa-
miliar after an introductory course in statistics. As we eventually move
to generalized additive models, we can see them as a subsequent step
in the generalization.

Generalized Additive Model

Now let us make another generalization to incorporate nonlinear forms
of the predictors. The form at the right gives the new setup relating

y ∼ ExpoFam(µ, etc.)

µ = E(y)

g(µ) = b0 + f (x1) + f (x2) + ... + f (xp)

our new, now nonlinear predictor to the expected value, with whatever
link function may be appropriate.

So what’s the difference? In short, we are using smooth functions
of our predictor variables, which can take on a great many forms,
with more detail in the following section. For now, it is enough to
note the observed values y are assumed to be of some exponential
family distribution, and µ is still related to the model predictors via
a link function. The key difference now is that the linear predictor
now incorporates smooth functions f (x) of at least some (possibly all)
covariates.
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Beyond the General Linear Model II

Fitting the Standard Linear Model

In many data situations the relationship between some covariate(s) X
and response y is not so straightforward. Consider the plot at the right.
Attempting to fit a standard OLS regression results in the blue line,
which doesn’t capture the relationship very well.

Polynomial Regression

y ∼ N (µ, σ2)

µ = b0 + b1X1 + b2X2

One common approach we could undertake is to add a transformation
of the predictor X, and in this case we might consider a quadratic term
such that our model looks something like that to the right.
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We haven’t really moved from the general linear model in this case,
but we have a much better fit to the data as evidenced by the graph.
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Scatterplot Smoothing

There are still other possible routes we could take. Many are probably
familiar with lowess (or loess) regression, if only in the sense that often
statistical packages may, either by default or with relative ease, add a
nonparametric fit line to a scatterplot2. By default this is typically a 2 See the scatterplots in the car package

for examplelowess fit.
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Now look at the figure to the right. For every (sorted) x0 value,
we choose a neighborhood around it and, for example, fit a simple
regression. As an example, let’s look at x0 = 3.0, and choose a neigh-
borhood of 100 X values below and 100 values above. Now, for just
that range we fit a linear regression model and note the fitted value
where x0 = 3.0. If we now do this for every X value, we’ll have fitted
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values based on a rolling neighborhood that is relative to each X value
being considered. Other options we could throw into this process, and
usually do, would be to fit a polynomial regression for each neighbor-
hood, and weight observations the closer they are to the X value, with
less weight given to more distant observations.
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The next plot shows the result from such a fitting process, specifi-
cally lowess, or locally weighted scatterplot smoothing. For comparison
the regular regression fit is also provided. Even without using a lowess
approach, we could have fit have fit a model assuming a quadratic re-
lationship, y = x + x2, and it would result in a far better fit than the
simpler model3. While polynomial regression might suffice in some

3 y was in fact constructed as x + x2+
noise.

cases, the issue is that nonlinear relationships are generally not speci-
fied so easily4. One can see this a variety of approaches in the bottom

4 Bolker 2008 notes an example of fitting
a polynomial to 1970s U.S. Census data
that would have predicted a population
crash to zero by 2015.

figure, which is a version of that found in Venables and Ripley (1997
edition). The leftmost plots are from a polynomial regression and

Polynomial Regression (cubic) Natural Splines Smoothing Splines
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Generalized Additive Models

The last figure on this page regards a data set giving a series of mea-
surements of head acceleration in a simulated motorcycle accident.
Time is in milliseconds, acceleration in g. Here we have data that are
probably not going to be captured with simple transformations of the
predictors. In the figure one can compare various approaches, and
the first is a straightforward cubic polynomial regression, which un-
fortunately doesn’t help us much. We could try higher orders, which
would help, but in the end we will need something more flexible, and
generalized additive models can help us in such cases.
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Summary

Let’s summarize our efforts up to this point.

Standard Linear Model
y ∼ N (µ, σ2)

µ = b0 + b1X1

Polynomial Regression
y ∼ N (µ, σ2)

µ = b0 + b1X1 + b2X2

GLM formulation
y ∼ N (µ, σ2)

g(µ) = b0 + b1X1 + b2X2 identity link function

GAM formulation
y ∼ N (µ, σ2)

g(µ) = f (X) identity link function

Now that some of the mystery will hopefully have been removed, let’s
take a look at GAMs in action.

Application Using R
Initial Examination

THE DATA SET HAS BEEN CONSTRUCTED using average Science scores
by country from the Programme for International Student Assessment
(PISA) 2006, along with GNI per capita (Purchasing Power Parity, 2005
dollars), Educational Index, Health Index, and Human Development
Index from UN data. The key variables are as follows (variable abbrevi-
ations in bold):

Overall Science Score (average score for 15 year olds) The education component is measured
by mean of years of schooling for adults
aged 25 years and expected years of
schooling for children of school entering
age, the health index by life expectancy
at birth, and the wealth component is
based on the gross national income per
capita. The HDI sets a minimum and
a maximum for each dimension, and
values indicate where each country
stands in relation to these endpoints,
expressed as a value between 0 and 1.
More information on the HDI measures
can be found here.

Interest in science

Support for scientific inquiry

Income Index

Health Index

Education Index

Human Development Index (composed of the Income index, Health
Index, and Education Index)

http://www.pisa.oecd.org/
http://hdrstats.undp.org/en/tables/default.html
http://hdr.undp.org/en/statistics/hdi/
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But even before we get too far, it would be good to know our op-
tions in the world of GAMs. Near the end of this document is a list of
some packages to be aware of, and there is quite a bit of GAM func-
tionality available within R, even for just plotting5. For our purposes 5 ggplot2 has basic gam functionality for

scatterplot smoothing. Examples are
further in the text.

we will use mgcv.
The first thing to do is get the data in and do some initial inspec-

tions.

d = read.csv('http://www.nd.edu/~mclark19/learn/data/pisasci2006.csv')

library(psych)

describe(d)[-1,1:9] #univariate

## vars n mean sd median trimmed mad min max

## Overall 2 57 473.14 54.58 489.00 477.45 48.93 322.00 563.00

## Issues 3 57 469.91 53.93 489.00 474.28 41.51 321.00 555.00

## Explain 4 57 475.02 54.02 490.00 478.85 47.44 334.00 566.00

## Evidence 5 57 469.81 61.74 489.00 475.11 54.86 288.00 567.00

## Interest 6 57 528.16 49.84 522.00 525.72 53.37 448.00 644.00

## Support 7 57 512.18 26.08 512.00 512.15 25.20 447.00 569.00

## Income 8 61 0.74 0.11 0.76 0.75 0.11 0.41 0.94

## Health 9 61 0.89 0.07 0.89 0.89 0.08 0.72 0.99

## Edu 10 59 0.80 0.11 0.81 0.80 0.12 0.54 0.99

## HDI 11 59 0.81 0.09 0.82 0.81 0.09 0.58 0.94

Overall
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library(car)

scatterplotMatrix(d[,-c(1,3:5)],pch=19,cex=.5,reg.line=F, lwd.smooth=1.25,

spread=F,ellipse=T, col=c('gray60','#2957FF','#FF8000'),

col.axis='gray50')
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Zoom in to see country names.

The scatterplot matrix has quite a bit of information to spend some
time with- univariate and bivariate density, as well as loess curves. For
our purposes we will ignore the issue regarding the haves vs. have-nots
on the science scale and save that for another day. Note the surprising
negative correlation between interest and overall score for science,
which might remind us of Simpson’s paradox, namely, that what occurs
for the individual may not be the same for the group. One will also
note that while there is a positive correlation between Income and
Overall science scores, it flattens out after an initial rise. Linear fits
might be difficult to swallow for human development subscales in
general, but let’s take a closer look6.

6 In the following plots I have a ggplot
object called ggtheme to clean up the de-
fault plotting scheme. See the appendix.

library(ggplot2); library(reshape2)

#get data into a form to take advantage of ggplot

dmelt = melt(d, id=c('Country','Overall'),

measure=c('Interest','Support','Income','Health','Edu','HDI'))

#leave the smooth off for now

ggplot(aes(x=value,y=Overall), data=dmelt) +

geom_point(color='#FF8000',alpha=.75) +

#geom_smooth(se=F) +

geom_text(aes(label=Country), alpha=.25, size=1,angle=30, hjust=-.2,

vjust=-.2) +

http://en.wikipedia.org/wiki/Simpson_paradox
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facet_wrap(~variable, scales='free_x') +

ggtheme

We can see again that linear fits aren’t going to do so well for some,
though it might be a close approximation for interest in science and
support for science. Now let’s run the smooth. By default ggplot2 will
use a loess smoother for small data sets (i.e. < 1000 observations),
but can use the mgcv gam function as a smoother, though you’ll need to
load either the gam or mgcv packages first.
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library(mgcv)

ggplot(aes(x=value,y=Overall), data=dmelt) +

geom_point(color='#FF8000',alpha=.75) +

geom_smooth(se=F, method='gam', formula=y~s(x), color='#2957FF') +

facet_wrap(~variable, scales='free_x') +

ggtheme

Often in these situations people will perform some standard trans-
formation, such as a log, but it doesn’t help as nearly as often as it is
used. For example, in this case one can log the overall score, Income,
or both and a linear relation will still not be seen.

Single Predictor

Linear Fit

We will start with the simple situation of a single predictor. Let’s begin
by using a typical linear regression to predict science scores by the
Income index. We could use the standard R lm function, but I’ll leave
that as an exercise for comparison. We can still do straightforward
linear models with the gam function, and again it is important to note
that the standard linear model can be seen as a special case of a GAM.

library(mgcv)

mod_lm <- gam(Overall ~ Income, data=d)

summary(mod_lm)

##

## Family: gaussian

## Link function: identity

##

## Formula:

## Overall ~ Income

##

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 204.3 35.4 5.78 4.3e-07 ***
## Income 355.9 46.8 7.61 5.4e-10 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

##
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## R-sq.(adj) = 0.518 Deviance explained = 52.7%

## GCV = 1504.5 Scale est. = 1448.8 n = 54

What are we getting here? The same thing you get from a regular
linear model, because you just ran one. However there are a couple
things to look at. The coefficient is statistically significant, but serves
as a reminder that it usually a good idea to scale predictor variables
so that the effect is more meaningful. Here, moving one unit on In-
come is akin from going broke to being the richest country. But in a
more meaningful sense, if we moved from say, .7 to .8, we’d expect
an increase of about 35 points on the science score. We also see the
deviance explained, which serves as a generalization of R-squared 7 , 7 For those more familiar with general-

ized linear models, this is calculated as
(DevNull-DevResidual)/DevNull
One can verify this by running the same
model via the glm, and using the values
from the summary of the model object.

and in this case, it actually is equivalent to R-squared. Likewise there
is the familiar adjusted version of it to account for small sample size
and model complexity. The scale estimate is the scaled deviance, which
here is equivalent to the residual sums of squares. The GCV score we
will save for when we run a GAM.

GAM

Let’s now try some nonlinear approaches, keeping in mind that
µ = f (x). As a point of comparison, we can start by trying a standard
polynomial regression, and it might do well enough8. To start we 8 The following example is pretty much

straight from Wood (2006, Chapter 3)
with little modification.

must consider a basis for use, i.e. a set of basis functions bj that will be
combined to produce f (x):
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q
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bj(x)β j

To better explain by example, if we had a cubic polynomial the basis
is: b1(x) = 1, b2(x) = x, b3(x) = x2, b4(x) = x3, which, when
combined give us our f (x). For those familiar with the mechanics of
linear modeling, this is just our ’model matrix’, which we can save out
with many model functions in R via the argument x=T or using the
model.matrix function. With the graph at the right we can see the
effects in action. It is based on the results extracted from running the
model9 and obtaining the coefficients (e.g. the first plot represents

9 see ?poly for how to fit a polynomial in
R.

the intercept of 470.44, the second plot, our b2 coefficient of 289.5
multiplied by Income and so forth). The bottom plot shows the final fit
f (x), i.e. the linear combination of the basis functions.

At this point we have done nothing we couldn’t do in our regular
regression approach, but the take home message is that as we move
to GAMs we are going about things in much the same fashion; we are
simply changing the nature of the basis, and have a great deal more
flexibility in choosing the form.

In the next figure I show the fit using a ’by-hand’ cubic spline basis
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(see the appendix and Wood, 2006, p.126-7). A cubic spline is essen-
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tially a connection of multiple cubic polynomial regressions. We choose
points of the variable at which to create sections, and these points are
referred to as knots. Separate cubic polynomials are fit at each section,
and then joined at the knots to create a continuous curve. The graph
represents a cubic spline with 8 knots10 between the first and third

10 Ten including the endpoints.

quartiles. The inset graph uses the GAM functionality within ggplot2’s
geom_smooth as a point of comparison.

Let’s now fit an actual generalized additive model using the same
cubic spline as our smoothing function. We again use the gam function
as before for basic model fitting, but now we are using a function s

within the formula to denote the smooth terms. Within that function
we also specify the type of smooth, though a default is available. I
chose ’cr’, denoting cubic regression splines, to keep consistent with
our previous example.

mod_gam1 <- gam(Overall ~ s(Income, bs="cr"), data=d)

summary(mod_gam1)

##

## Family: gaussian

## Link function: identity

##

## Formula:

## Overall ~ s(Income, bs = "cr")

##

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 470.44 4.08 115 <2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Approximate significance of smooth terms:

## edf Ref.df F p-value

## s(Income) 6.9 7.74 16.4 2e-14 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## R-sq.(adj) = 0.7 Deviance explained = 73.9%

## GCV = 1053.7 Scale est. = 899.67 n = 54

The first thing to note is, that aside from the smooth part, our model
code is similar to what we’re used to with core R functions such as lm
and glm. In the summary, we first see the distribution assumed as well
as the link function used, in this case normal and identity, respectively,
which to iterate, had we had no smoothing would result in a standard
regression model. After that we see that the output is separated into
parametric and smooth, or nonparametric parts. In this case, the only
parametric component is the intercept, but it’s good to remember that
you are not bound to smooth every effect of interest, and indeed, as
we will discuss in more detail later, part of the process may involve
refitting the model with terms that were found to be linear for the
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most part anyway. The smooth component of our model regarding a
country’s income’s relationship with overall science score is statistically
significant, but there are a couple of things in the model summary that
would be unfamiliar.

We’ll start with the effective degrees of freedom, or edf. In typical OLS
regression the model degrees of freedom is equivalent to the number
of predictors/terms in the model. This is not so straightforward with
a GAM due to the smoothing process and the penalized regression es-
timation procedure, something that will be discussed more later11. 11 In this example there are actually 9

terms associated with this smooth, but
they are each ’penalized’ to some extent
and thus the edf does not equal 9.

In this situation, we are still trying to minimize the residual sums
of squares, but also have a built in penalty for ’wiggliness’ of the fit,
where in general we try to strike a balance between an undersmoothed
fit and an oversmoothed fit. The default p-value for the test is based on
the effective degrees of freedom and the rank r of the covariance ma-
trix for the coefficients for a particular smooth, so here conceptually it
is the p-value associated with the F(r, n− ed f ). However there are still
other issues to be concerned about, and ?summary.gam will provide
your first step down that particular rabbit hole. For hypothesis testing
an alternate edf is actually used, which is the other one provided there
in the summary result12. At this point you might be thinking these p- 12 Here it is noted ’Rel.df’ but if, for ex-

ample, the argument p.type = 5 is used,
it will be labeled ’Est.Rank’. Also, there
are four p-value types one can choose
from. The full story of edf, p-values and
related is scattered throughout Wood’s
text. See also ?anova.gam

values are a bit fuzzy, and you’d be right. The gist is, they aren’t to be
used for harsh cutoffs, say, at an arbitrary .05 level13, but if they are

13 But then, standard p-values shouldn’t
be used that way either.

pretty low you can feel comfortable claiming statistical significance,
which of course is the end all, be all, of the scientific endeavor.

The GCV, or generalized cross validation score can be taken as an
estimate of the mean square prediction error based on a leave-one-out
cross validation estimation process. We estimate the model for all ob-
servations except i, then note the squared residual predicting observa-
tion i from the model. Then we do this for all observations. However,
the GCV score is an efficient measure of this concept that doesn’t ac-
tually require fitting all those models and overcomes other issues. It is In this initial model the GCV can be

found as:
GCV = n∗scaled est.

(n−ed f−[n o f parametric terms])2

this score that is minimized when determining the specific nature of
the smooth. On its own it doesn’t tell us much, but we can use it simi-
lar to AIC as a comparative measure to choose among different models,
with lower being better.

Graphical Display
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The intervals are Bayesian credible
intervals.

One can get sense of the form of the fit by simply plotting the model
object as follows:

plot(mod_gam1)

Although in this single predictor case one can also revisit the previ-
ous graph, where the inset was constructed directly from ggplot. You
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can examine the code in the appendix.

Model Comparison

Let us now compare our regular regression fit to the GAM model fit.
The following shows how one can extract various measures of perfor-
mance and the subsequent table shows them gathered together.

AIC(mod_lm)

## [1] 552.2

summary(mod_lm)$sp.criterion

## [1] 1504

summary(mod_lm)$r.sq #adjusted R squared

## [1] 0.5175

Do the same to extract those same elements from the GAM. The
following display14 makes for easy comparison. 14 I just gathered the values into a

data.frame object and used xtable from
the eponymous package to produce the
table.aic_lm aic_gam1 gcv_lm gcv_gam1 rsq_lm rsq_gam1

550.24 529.81 1504.50 1053.73 0.52 0.70

Comparing these various measures, it’s safe to conclude that the GAM
fits better. We can also perform the familiar statistical test via the
anova function we apply to other R model objects. As with the previ-
ous p-value issue, we can’t be too particular, and technically one could
have a model with more terms but lower edf, where it just wouldn’t
even make sense15. As it would be best to be conservative, we’ll pro- 15 ?anova.gam for more information.

ceed cautiously.

anova(mod_lm, mod_gam1, test="Chisq")

## Analysis of Deviance Table

##

## Model 1: Overall ~ Income

## Model 2: Overall ~ s(Income, bs = "cr")

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 52.0 75336

## 2 46.1 41479 5.9 33857 1.2e-06 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It would appear the anova results tell us what we have probably
come to believe already, that incorporating nonlinear effects has im-
proved the model considerably.
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Multiple Predictors

Let’s now see what we can do with a more realistic case where we have
added model complexity.

Linear Fit

We’ll start with the typical linear model approach again, this time
adding the Health and Education indices.

mod_lm2 <- gam(Overall ~ Income + Edu + Health, data=d)

summary(mod_lm2)

##

## Family: gaussian

## Link function: identity

##

## Formula:

## Overall ~ Income + Edu + Health

##

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 121.2 79.0 1.53 0.131

## Income 182.3 85.3 2.14 0.038 *
## Edu 234.1 54.8 4.27 9.1e-05 ***
## Health 27.0 134.9 0.20 0.842

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

##

## R-sq.(adj) = 0.616 Deviance explained = 63.9%

## GCV = 1212.3 Scale est. = 1119 n = 52

It appears we have statistical effects for Income and Education, but
not for Health, and the adjusted R-squared suggests a notable amount
of the variance is accounted for16. Let’s see about nonlinear effects. 16 Note that a difference in sample sizes

do not make this directly comparable to
the first model.

GAM

As far as the generalized additive model goes, we can approach things
in a similar manner as before. We will ignore the results of the linear
model for now and look for nonlinear effects for each covariate. The default smoother for s() is the

argument bs=’tp’, a thin plate regression
spline.mod_gam2 <- gam(Overall ~ s(Income) + s(Edu) + s(Health), data=d)

summary(mod_gam2)

##

## Family: gaussian

## Link function: identity

##

## Formula:

## Overall ~ s(Income) + s(Edu) + s(Health)

##

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) 471.15 2.77 170 <2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Approximate significance of smooth terms:

## edf Ref.df F p-value

## s(Income) 7.59 8.41 8.83 1.3e-07 ***
## s(Edu) 6.20 7.18 3.31 0.0073 **
## s(Health) 1.00 1.00 2.74 0.1066

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## R-sq.(adj) = 0.863 Deviance explained = 90.3%

## GCV = 573.83 Scale est. = 399.5 n = 52

There are again a couple things to take note of. First, statistically
speaking, we come to the same conclusion as the linear model regard-
ing the individual effects. One should take particular note of the effect
of Health index. The effective degrees of freedom with value 1 sug-
gests that it has essentially been reduced to a simple linear effect. The
following will update the model to explicitly model the effect as such,
but as one can see, the results are identical.

mod_gam2B = update(mod_gam2, .~.-s(Health) + Health)

summary(mod_gam2B)

##

## Family: gaussian

## Link function: identity

##

## Formula:

## Overall ~ s(Income) + s(Edu) + Health

##

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 640 102 6.26 3.1e-07 ***
## Health -190 115 -1.65 0.11

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Approximate significance of smooth terms:

## edf Ref.df F p-value

## s(Income) 7.59 8.41 8.83 1.3e-07 ***
## s(Edu) 6.20 7.18 3.31 0.0073 **
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## R-sq.(adj) = 0.863 Deviance explained = 90.3%

## GCV = 573.83 Scale est. = 399.5 n = 52

We can also note that this model accounts for much of the variance
in Overall science scores, with an adjusted R-squared of .86. In short,
it looks like the living standards and educational resources of a country
are associated with overall science scores, even if we don’t really need
the Health index in the model.
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Graphical Display

Now we examine the effects of interest visually. In the following code,
aside from the basic plot we have changed the default options to put
all the plots on one page, added the partial residuals17, and changed 17 See e.g. John Fox’s texts and chapters

regarding regression diagnostics, and his
crplots function in the car package.

the symbol and its respective size, among other options.

plot(mod_gam2, pages=1, residuals=T, pch=19, cex=0.25,

scheme=1, col='#FF8000', shade=T,shade.col='gray90')
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Here we can see the effects of interest, and again one might again
note the penalized-to-linear effect of Health. We again see the tapering
off of Income’s effect at its highest level, and in addition, a kind of
sweet spot for a positive effect of Education in the mid-range values,
with a slight positive effect overall. Health, as noted, has been reduced
to a linear, surprisingly negative effect, but again this is non-significant.
One will also note the y-axis scale. The scale is on that of the linear
predictor, but due to identifiability constraints, the smooths must sum
to zero, and thus are presented in a mean-centered fashion.

Previously, we had only one predictor and so we could let ggplot
do the work to produce a plot on the response scale, although we
could have added the intercept back in. Here we’ll need to do a little

300

400

500

0.4 0.6 0.8
Income

fit

more. The following will produce a plot for Income on the scale of the
response, with the other predictors held at their mean. Seen at right.

# Note that mod_gam2$model is the data that was used in the modeling process,

# so it will have NAs removed.

testdata = data.frame(Income=seq(.4,1, length=100),

Edu=mean(mod_gam2$model$Edu),

Health=mean(mod_gam2$model$Health))

fits = predict(mod_gam2, newdata=testdata, type='response', se=T)

predicts = data.frame(testdata, fits)

ggplot(aes(x=Income,y=fit), data=predicts) +

geom_smooth(aes(ymin = fit - 1.96*se.fit, ymax=fit + 1.96*se.fit),

fill='gray80', size=1,stat='identity') +

ggtheme

This gives us a sense for one predictor, but let’s take a gander at
Income and Education at the same time. Previously, while using the
function plot, it actually is plot.gam, or the basic plot function for a
GAM class object. There is another plotting function, vis.gam, that will
give us a bit more to play with. The following will produce a contour
plot (directly to the right) with Income on the x axis, Education on the
y, with values on the response scale given by the contours, with lighter
color indicating higher values.
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vis.gam(mod_gam2, type='response', plot.type='contour')

First and foremost the figure to the right reflects the individual plots
(e.g. one can see the decrease in scores at the highest income lev-
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els), and we can see that middling on Education and high on Income
generally produces the highest scores. Conversely, being low on both
the Education and Income indices are associated with poor Overall
science scores. However, while interesting, these respective smooths
were created separately of one another, and there is another way we
might examine how these two effects work together in predicting the
response.
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Let’s take a look at another approach, continuing the focus on visual
display. It may not be obvious at all, but one can utilize smooths of
more than one variable, in effect, a smooth of the smooths of the vari-
ables that go into it. Let’s create a new model to play around with this
feature. After fitting the model, an example of the plot code is given
producing the middle figure, but I also provide a different perspec-
tive as well as contour plot for comparison with the graph based on
separate smooths.

Income

E
du

response

Income

E
du

response

mod_gam3 <- gam(Overall ~ te(Income,Edu), data=d)

summary(mod_gam3)

##

## Family: gaussian

## Link function: identity

##

## Formula:

## Overall ~ te(Income, Edu)

##

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 471.15 3.35 141 <2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Approximate significance of smooth terms:

## edf Ref.df F p-value

## te(Income,Edu) 10.1 12.2 16.9 <2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## R-sq.(adj) = 0.8 Deviance explained = 84%

## GCV = 741.42 Scale est. = 583.17 n = 52

vis.gam(mod_gam3, type='response', plot.type='persp',

phi=30, theta=30,n.grid=500, border=NA)

In the above we are using a type of smooth called a tensor product
smooth, and by smoothing the marginal smooths of Income and Educa-
tion, we see a bit clearer story. As we might suspect, wealthy countries
with more of an apparent educational infrastructure are going to score
higher on the Overall science score. However, wealth is not necessarily
indicative of higher science scores (note the dark bottom right corner
on the contour plot)18, though without at least moderate wealth hopes

18 This is likely due to Qatar. Refer again
to the figure on page 9.
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are fairly dim for a decent score.
One can also, for example, examine interactions between a smooth

and a linear term f (x)z, and in a similar vein of thought look at
smooths at different levels of a grouping factor. We’ll leave that for
some other time.

Model Comparison

As before, we can examine indices such as GCV or perhaps adjusted
R-square, which both suggest our GAM performs considerably better.
Statistically we can compare the two models with the anova function
as before.

anova(mod_lm2, mod_gam2, test="Chisq")

## Analysis of Deviance Table

##

## Model 1: Overall ~ Income + Edu + Health

## Model 2: Overall ~ s(Income) + s(Edu) + s(Health)

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 48.0 53713

## 2 36.2 14463 11.8 39250 9.8e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Not that we couldn’t have assumed as such already, but now we
have additional statistical evidence to suggest that incorporating non-
linear effects improves the model.

Other Issues
Estimation

AS NOTED PREVIOUSLY, estimation of GAMs in the mgcv package
is conducted via a penalized likelihood approach. Conceptually this
amounts to fitting the following model

g(µ) = Xβ + f (x1) + f (x2)... f (xp)

But note that each smooth has its own model matrix made up of the
bases. So for each smooth covariate we have:

f j = X̃j β̃ j

Given a matrix of coefficients S, we can more formally note a penal-
ized likelihood function:

lp(β) = l(β)− 1
2 ∑

j
λjβ

TSjβ
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where l(β) is the usual GLM likelihood function, and λj are the smooth-
ing parameters. The part of the function including λ penalizes curva-
ture in the function, where λ establishes a trade-off between the good-
ness of fit and the smoothness, and such an approach will allow for less
overfitting19. Technically we could specify the smoothing parameters 19 λ → ∞ would result in a straight line

estimate for f j, while λ = 0 would allow
any f that interpolates the data (Wood,
2006, p. 128)

explicitly, and the appendix has some ’by-hand’ code taken directly
from Wood (2006) with only slight modifications, where the smoothing
parameters are chosen and compared20. 20 And we would have to choose in order

for the penalized maximum likelihood to
work.

Smoothing parameters however are in fact estimated, and this
brings us back to the cross-validation procedure mentioned before.
Smoothing parameters are selected which minimize the GCV score
by default, though one has other options. Note that there are other
approaches to estimation such as backfitting, generalized smoothing
splines and Bayesian.

Shrinkage & Variable Selection

Some smooths are such that no matter the smoothing parameter, there
will always be non-zero coefficients. An extra penalty may be added
such that if the smoothing parameter is large enough, the coefficients
will shrink to zero, and some smoothing bases will have such alterna-
tive approaches available21. In this manner one can assess whether a 21 See also, the select argument to the

gam function. Also, in version 1.7-
19, which came out during creation
of this document, summary.gam and
anova.gam had changes made to improve
the p-value computation in penalized
situations.

predictor is adding anything to the model, i.e. if it’s effective degrees
of freedom is near zero, and perhaps use the approach as a variable
selection technique.

Effective degrees of freedom again

If we define a matrix F that maps the unpenalized estimates of β to the
penalized estimates such that

F = (XTX + S)−1XTX

and note

β̃ = (XTX)−1XTy
β̂ = Fβ̃

the diagonal elements of F are where the effective degrees of freedom
for each covariate come from.

Choice of Smoothing Function

A number of smooths are available with the mgcv package, and one
can learn more by entering ?smooth.terms at the command line. In
our models we have used cubic regression splines and thin plate re-
gression splines (TPRS), the latter being the default for a GAM in this
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package. As a brief summary, TPRS work well in general in terms of
performance and otherwise has some particular advantages, and has
a shrinkage alternative available. One should still feel free to play
around, particularly when dealing with multiple smooths, where the
tensor product smooths would be better for covariates of different
scales.

Diagnostics & Choice of Basis Dimension

We have some built-in abilities to examine whether there are any par-
ticular issues, and we can try it with our second GAM model.
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gam.check(mod_gam2, k.rep=1000)

##

## Method: GCV Optimizer: magic

## Smoothing parameter selection converged after 21 iterations.

## The RMS GCV score gradiant at convergence was 2.499e-05 .

## The Hessian was positive definite.

## The estimated model rank was 28 (maximum possible: 28)

## Model rank = 28 / 28

##

## Basis dimension (k) checking results. Low p-value (k-index<1) may

## indicate that k is too low, especially if edf is close to k'.

##

## k' edf k-index p-value

## s(Income) 9.000 7.593 1.258 0.96

## s(Edu) 9.000 6.204 1.008 0.45

## s(Health) 9.000 1.000 0.899 0.19

The plots are of the sort we’re used to from a typical regression
setting, though it’s perhaps a bit difficult to make any grand conclu-
sion based on such a small data set. The printed output on the other One can inspect the quantile-quantile

plot directly with the qq.gam function.hand contains unfamiliar information, but is largely concerned with
over-smoothing, and so has tests of whether the basis dimension for a
smooth is too low. The p-values are based on simulation, so I bumped
up the number with the additional argument. Guidelines are given
in the output itself, and at least in this case it does not look like we
have an issue. However, if there were a potential problem, it is sug-
gested to double k22 and refit, and if the effective degrees of freedom 22 k can be set as an argument to

s(var1, k=?).increases quite a bit you would probably want to go with the updated
model23. Given the penalization process, the exact choice of k isn’t 23 I actually did this for Health, which is

the only one of the predictors that could
be questioned, and there was no change
at all; it still reduced to a linear effect.

too big of a deal, but the defaults are arbitrary. You want to set it large
enough to get at the true effect as best as possible, but in some cases
computational efficiency will also be of concern. The help on the func-
tion choose.k provides another approach to examining k based on
the residuals from the model under consideration, and provides other
useful information.
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Prediction

A previous example used the predict function on the data used to fit
the model to obtain fitted values on the response scale. Typically we’d
use this on new data. I do not cover it, because the functionality is the
same as the predict.glm function in base R, and one can just refer
to that. It is worth noting that there is an option, type=’lpmatrix’,
which will return the actual model matrix by which the coefficients
must be pre-multiplied to get the values of the linear predictor at the
supplied covariate values. This can be particularly useful towards
opening the black box as one learns the technique.

Model Comparison Revisited

We have talked about automated smoothing parameter and term selec-
tion, and in general potential models are selected based on estimation
of the smoothing parameter. Using an extra penalty to allow coeffi-
cients to tend toward zero with the argument select=TRUE is an auto-
matic way to go about it, where some terms could effectively drop out.
Otherwise we could compare models GCV/AIC scores24, and in general 24 GCV scores are not useful for compar-

ing fits of different families; AIC is still
ok though.

either of these would be viable approaches. Consider the following
comparison:

mod_1d = gam(Overall ~ s(Income) + s(Edu), data=d)

mod_2d = gam(Overall ~ te(Income,Edu, bs="tp"), data=d)

AIC(mod_1d, mod_2d)

## df AIC

## mod_1d 15.59 478.1

## mod_2d 13.25 491.7

In some cases we might prefer to be explicit in comparing models
with and without particular terms, and we can go about comparing
models as we would with a typical GLM analysis of deviance. We have
demonstrated this previously using the anova.gam function, where we
compared linear fits to a model with an additional smooth function.
While we could construct a scenario that is identical to the GLM situ-
ation for a statistical comparison, it should be noted that in the usual
situation the test is actually an approximation, though it should be
close enough when it is appropriate in the first place. The following
provides an example that would nest the main effects of Income and
Education within the product smooth, i.e. sets their basis dimension
and smoothing function to the defaults employed by the te smooth.

mod_A = gam(Overall ~ s(Income, bs="cr", k=5) + s(Edu, bs="cr", k=5), data=d)

mod_B = gam(Overall ~ s(Income, bs="cr", k=5) + s(Edu, bs="cr", k=5) + te(Income, Edu), data=d)

anova(mod_A,mod_B, test="Chi")



23 Generalized Additive Models

## Analysis of Deviance Table

##

## Model 1: Overall ~ s(Income, bs = "cr", k = 5) + s(Edu, bs = "cr", k = 5)

## Model 2: Overall ~ s(Income, bs = "cr", k = 5) + s(Edu, bs = "cr", k = 5) +

## te(Income, Edu)

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 46.3 36644

## 2 42.0 24964 4.26 11679 0.00075 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Again though, we could have just used the summary output from the
second model.

Instances where such an approach does not appear to be appropri-
ate within the context of the mgcv package are when terms are able
to be penalized to zero; in such a case p-values will be much too low.
In addition, when comparing GAMs, sometimes the nesting of models
would not be so clear when there are multiple smooths involved, and
additional steps may need to be taken to make sure they are nested.
We must make sure that each smooth term in the null model has no
more effective degrees of freedom than the same term in the alterna-
tive, otherwise it’s possible that the model with more terms can have
lower effective degrees of freedom but better fit, rendering the test
nonsensical. Wood (2006) suggests that if such model comparison is
the ultimate goal an unpenalized approach25 would be best to have 25 This can be achieved with the argu-

ment s(..., fx=T), although now one
has to worry more about the k value
used, as very high k will lead to low
power

much confidence in the p-values.26

26 One might also examine the gss
package for anova based approach to
generalized smoothing splines.

Other Approaches
THIS SECTION WILL DISCUSS some ways to relate the generalized
models above to other forms of nonlinear modeling approaches, some
familiar and others perhaps less so. In addition, I will note some exten-
sions to GAMs to consider.

Relation to Other Nonlinear Modeling Approaches

Known Form

It should be noted that one can place generalized additive models A general form of nonlinear models:
y = f (X, β) + εunder a general heading of nonlinear models whose focus may be on

transformations of the outcome (as with generalized linear models),
the predictor variables (polynomial regression and GAMs), or both
(GAMs), in addition to those whose effects are nonlinear in the param-
eters 27. The difference between the current presentation and those 27 For example, various theoretically

motivated models in economics and
ecology.

latter nonlinear models as distinguished in typical introductory statisti-
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cal texts that might cover some nonlinear modeling, is that we simply
don’t know the form beforehand.

In cases where the form may be known, one can use an approach
such as nonlinear least squares, and there is inherent functionality
within a standard R installation, such as the nls function. As is the
usual case, such functionality is readily extendable to a great many
other analytic situations, e.g. the gnm for generalized nonlinear models
or nlme for nonlinear mixed effects models.

Response Transformation

It is common practice, perhaps too common, to manually transform the
response and go about things with a typical linear model. While there
might be specific reasons for doing so, the primary reason applied
researchers seem to do so is to make the distribution ’more normal’
so that regular regression methods can be applied. As an example, a
typical transformation is to take the log, particularly to tame ’outliers’
or deal with skewness.

While it was a convenience ’back in the day’ because we didn’t have
software or computing power to deal with a lot of data situations aptly,
this is definitely not the case now. In many situations it would be better
to, for example, conduct a generalized linear model with a log link or
perhaps assume a different distribution for the response directly (e.g.
skew-normal), and many tools allow researchers to do this with ease28. 28 A lot of ’outliers’ tend to magically

go away with an appropriate choice
of distribution for the data generating
process.

There are still cases where one might focus on response transforma-
tion, just not so one can overcome some particular nuisance in trying
to fit a linear regression. An example might be in some forms of func-
tional data analysis, where we are concerned with some function of the
response that has been measured on many occasions over time.

The Black Box

Venables and Ripley (2002, Section 11.5) make an interesting classi-
fication of nonlinear models into those that are less flexible but under
full user control (fully parametric), and those that are black box tech- One could probably make the case that

most modeling is ’black box’ for a great
many researchers.

niques that are highly flexible and fully automatic: stuff goes in, stuff
comes out, but we’re not privy to the specifics29.

29 For an excellent discussion of these
different approaches to understanding
data see Breiman (2001) and associated
commentary. For some general packages
outside of R that incorporate a purely
algorithmic approach to modeling, you
might check out RapidMiner or Weka.
Note also that RapidMiner allows for R
functionality via an add-on package, and
the RWeka package brings Weka to the R
environment.

Two examples of the latter that they provide are projection pursuit
and neural net models, though a great many would fall into such a
heading. Projection pursuit models are well suited to high dimensional
data where dimension reduction is a concern. One may think of an
example where one uses a technique such as principal components
analysis on the predictor set and then examines smooth functions of M
principal components.
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In the case of neural net models, one can imagine a model where
the input units (predictor variables) are weighted and summed to
create hidden layer units, which are then essentially put through the
same process to create outputs (see a simple example to the right).

Input Layer Hidden Layer Output

A Neural Net Model

One can see projection pursuit models as an example where a smooth
function is taken of the components which make up the hidden layer.
Neural networks are highly flexible in that there can be any number
of inputs, hidden layers, and outputs. However, such models are very
explicit in the black box approach.

Projection pursuit and neural net models are usually found among
data mining/machine learning techniques any number of which might
be utilized in a number of disciplines. Other more algorithmic/black
box approaches include k-nearest-neighbors, random forests, support
vector machines, and various tweaks or variations thereof including
boosting, bagging, bragging and other alliterative shenanigans30.

30 See Hastie et al. (2009) for an
overview of such approaches.

As Venables and Ripley note, generalized additive models might be
thought of as falling somewhere in between the fully parametric and
interpretable models of linear regression and black box techniques.
Indeed, there are algorithmic approaches which utilize GAMs as part of
their approach.

Extensions

Other GAMs

Note that just as generalized additive models are an extension of the
generalized linear model, there are generalizations of the basic GAM
beyond the settings described. In particular, random effects can be
dealt with in this context as they can with linear and generalized linear
models, and there is an interesting connection between smooths and
random effects in general 31. Generalized additive models for location, 31 Wood (2006) has a whole chapter

devoted to the subject.scale, and shape (GAMLSS) allow for distributions beyond the expo-
nential family Rigby and Stasinopoulos (2005). In addition there are
boosted, ensemble and other machine learning approaches that apply
GAMs as well32. In short, there’s plenty to continue to explore once 32 See the GAMens package for example.

one gets the hang of generalized additive models.

Gaussian Processes: a Probabilistic Approach

We can also approach modeling by using generalizations of the Gaus-
sian distribution. Where the Gaussian distribution is over vectors and
defined by a mean vector and covariance matrix, the Gaussian Pro-
cess is over functions. A function f is distributed as a Gaussian Process
defined by a mean function m and covariance function k.
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f ∼ GP(m, k)

-3

-2

-1

0

1

2

-4 0 4
x

va
lu

e

Prior

-1

0

1

2

-8 -4 0 4 8
x

va
lu

e

Posterior Predictive

Gaussian Process y = sin(x) + noise.
The left graph shows functions from the
prior distribution, the right shows the
posterior mean function, 95% confidence
interval shaded, as well as specific draws
from the posterior predictive mean
distribution.

In the Bayesian context we can define a prior distribution over func-
tions and make draws from a posterior predictive distribution of f .
The reader is encouraged to consult Rasmussen and Williams (2006)
for the necessary detail. The text is free for download here, and Ras-
mussen provides a nice and brief intro here. I also have some R code
for demonstration here based on his Matlab code.

Suffice it to say in this context, it turns out that generalized additive
models with a tensor product or cubic spline smooth are maximum
a posteriori (MAP) estimates of gaussian processes with specific co-
variance functions and a zero mean function. In that sense one might
segue nicely to gaussian processes if familiar with additive models.

Conclusion
Generalized additive models are a conceptually straightforward tool
that allows one to incorporate nonlinear predictor effects into their
otherwise linear models. In addition, they allow one to keep within the
linear and generalized linear frameworks with which one is already fa-
miliar, while providing new avenues of model exploration and possibly
improved results. As was demonstrated, it is easy enough with just a
modicum of familiarity to pull them off within the R environment, and
as such it is hoped that this document provides a means to do so for
the uninitiated.

http://www.gaussianprocess.org/gpml/
http://link.springer.com/chapter/10.1007/978-3-540-28650-9_4
https://github.com/mclark--/Miscellaneous-R-Code/blob/master/ModelFitting/gp Examples/gaussianprocessNoisy.R
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Appendix
R packages

THE FOLLOWING IS a non-exhaustive list of R packages which contain
GAM functionality. Each is linked to the CRAN page for the package.
Note also that several build upon the mgcv package used for this docu-
ment.
amer: Fitting generalized additive mixed models based on the mixed
model algorithm of lme4 (gamm4 now includes this approach).
CausalGAM: This package implements various estimators for average
treatment effects.
COZIGAM: Constrained and Unconstrained Zero-Inflated Generalized
Additive Models.
CoxBoost: This package provides routines for fitting Cox models. See
also cph in rms package for nonlinear approaches in the survival con-
text.
gam: Functions for fitting and working with generalized additive mod-
els.
GAMBoost: This package provides routines for fitting generalized lin-
ear and and generalized additive models by likelihood based boosting.
gamboostLSS: Boosting models for fitting generalized additive models
for location, shape and scale (gamLSS models).
GAMens: This package implements the GAMbag, GAMrsm and GAMens
ensemble classifiers for binary classification.
gamlss: Generalized additive models for location, shape, and scale.
gamm4: Fit generalized additive mixed models via a version of mgcv’s
gamm function.
gammSlice: Bayesian fitting and inference for generalized additive
mixed models.
GMMBoost: Likelihood-based Boosting for Generalized mixed models.
gss: A comprehensive package for structural multivariate function
estimation using smoothing splines.
mboost: Model-Based Boosting.
mgcv: Routines for GAMs and other generalized ridge regression with
multiple smoothing parameter selection by GCV, REML or UBRE/AIC.
Also GAMMs.
VGAM: Vector generalized linear and additive models, and associated
models.

http://cran.r-project.org/web/packages/amer/index.html
http://cran.r-project.org/web/packages/CausalGAM/index.html
http://cran.r-project.org/web/packages/COZIGAM/index.html
http://cran.r-project.org/web/packages/CoxBoost/index.html
http://cran.r-project.org/web/packages/gam/index.html
http://cran.r-project.org/web/packages/GAMBoost/index.html
http://cran.r-project.org/web/packages/gamboostLSS/index.html
http://cran.r-project.org/web/packages/GAMens/index.html
http://cran.r-project.org/web/packages/gamlss/index.html
http://cran.r-project.org/web/packages/gamm4/index.html
http://cran.r-project.org/web/packages/gammSlice/index.html
http://cran.r-project.org/web/packages/GMMBoost/index.html
http://cran.r-project.org/web/packages/gss/index.html
http://cran.r-project.org/web/packages/mboost/index.html
http://cran.r-project.org/web/packages/mgcv/index.html
http://cran.r-project.org/web/packages/VGAM/index.html
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Miscellaneous Code

Here is any code that might be okay to play around with but would
have unnecessarily cluttered sections of the paper.

ggtheme

My ggplot2 default options: ggtheme. Note that by actually adding the
theme line after the ggtheme section, you can then override or change
certain parts of it on the fly while maintaining the gist. I have this in
my Rprofile.site file so that it is always available.

#set default options in case we use ggplot later

ggtheme =

theme(

axis.text.x = element_text(colour='gray50'),

axis.text.y = element_text(colour='gray50'),

panel.background = element_blank(),

panel.grid.minor = element_blank(),

panel.grid.major = element_blank(),

panel.border = element_rect(colour='gray50'),

strip.background = element_blank()

)

mod_gam1 plot

ggplot(aes(x=Income, y=Overall), data=d) +

geom_point(color="#FF8000") +

geom_smooth(se=F, method='gam', formula=y~s(x, bs="cr")) +

xlim(.4,1) +

ggtheme

Penalized Estimation Example

Initial data set up and functions.

############################

### Wood by-hand example ###

############################

size = c(1.42,1.58,1.78,1.99,1.99,1.99,2.13,2.13,2.13,

2.32,2.32,2.32,2.32,2.32,2.43,2.43,2.78,2.98,2.98)

wear = c(4.0,4.2,2.5,2.6,2.8,2.4,3.2,2.4,2.6,4.8,2.9,

3.8,3.0,2.7,3.1,3.3,3.0,2.8,1.7)

x= size-min(size); x = x/max(x)

d = data.frame(wear, x)

#cubic spline function

rk <- function(x,z) {

((z-0.5)^2 - 1/12)*((x-0.5)^2 - 1/12)/4-

((abs(x-z)-0.5)^4-(abs(x-z)-0.5)^2/2 + 7/240) / 24
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}

spl.X <- function(x,knots){

q <- length(knots) + 2 # number of parameters

n <- length(x) # number of observations

X <- matrix(1,n,q) # initialized model matrix

X[,2] <- x # set second column to x

X[,3:q] <- outer(x,knots,FUN=rk) # remaining to cubic spline

X

}

spl.S <- function(knots) {

q = length(knots) + 2

S = matrix(0,q,q) # initialize matrix

S[3:q,3:q] = outer(knots,knots,FUN=rk) # fill in non-zero part

S

}

#matrix square root function

mat.sqrt <- function(S){

d = eigen(S, symmetric=T)

rS = d$vectors%*%diag(d$values^.5)%*%t(d$vectors)

rS

}

#the fitting function

prs.fit <- function(y,x,knots,lambda){

q = length(knots) + 2 # dimension of basis

n = length(x) # number of observations

Xa = rbind(spl.X(x,knots), mat.sqrt(spl.S(knots))*sqrt(lambda)) # augmented model matrix

y[(n+1):(n+q)] = 0 #augment the data vector

lm(y ~ Xa-1) # fit and return penalized regression spline

}

Example 1.
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knots = 1:4/5

X = spl.X(x,knots) # generate model matrix

mod.1 = lm(wear~X-1) # fit model

xp <- 0:100/100 # x values for prediction

Xp <- spl.X(xp, knots) # prediction matrix

# Base R plot

plot(x, wear, xlab='Scaled Engine size', ylab='Wear Index', pch=19,

col="#FF8000", cex=.75, col.axis='gray50')

lines(xp,Xp%*%coef(mod.1), col='#2957FF') #plot

# ggplot

library(ggplot2)

ggplot(aes(x=x, y=wear), data=data.frame(x,wear))+

geom_point(color="#FF8000") +

geom_line(aes(x=xp, y=Xp%*%coef(mod.1)), data=data.frame(xp,Xp), color="#2957FF") +

ggtheme
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Example 2.
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knots = 1:7/8

d2 = data.frame(x=xp)

for (i in c(.1,.01,.001,.0001,.00001,.000001)){

mod.2 = prs.fit(wear, x, knots,i) #fit penalized regression

#spline choosing lambda

Xp = spl.X(xp,knots) #matrix to map parameters to fitted values at xp

d2[,paste('lambda = ',i, sep="")] = Xp%*%coef(mod.2)

}

### ggplot

library(ggplot2); library(reshape)

d3 = melt(d2, id='x')

ggplot(aes(x=x, y=wear), data=d) +

geom_point(col='#FF8000') +

geom_line(aes(x=x,y=value), col="#2957FF", data=d3) +

facet_wrap(~variable) +

ggtheme

### Base R approach

par(mfrow=c(2,3))

for (i in c(.1,.01,.001,.0001,.00001,.000001)){

mod.2 = prs.fit(wear, x, knots,i)

Xp = spl.X(xp,knots)

plot(x,wear, main=paste('lambda = ',i), pch=19,

col="#FF8000", cex=.75, col.axis='gray50')

lines(xp,Xp%*%coef(mod.2), col='#2957FF')

}

R Session Info

R version 3.1.0 (2014-04-10)

Base packages: base, datasets, graphics, grDevices, methods, stats,
utils

Other packages: mgcv_1.8-0 nlme_3.1-117 psych_1.4.5
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