Chapter 7 Fitting splines using mgcv
7.1 Fiting model
library(mgcv)
mod3<-gam(data=d,richness~s(grain))
7.2 Summary model
summary(mod3)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## richness ~ s(grain)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.6889 0.4601 12.36 2.6e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(grain) 3.615 4.468 15.92 3.25e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.619 Deviance explained = 65.1%
## GCV = 10.616 Scale est. = 9.5269 n = 45
7.3 Plotting model
theme_set(theme_bw())
g0<-ggplot(d,aes(x=grain,y=richness))
g1<-g0+geom_point() + stat_smooth(method = "gam", formula = y ~ s(x))
g1 + xlab("Mean grain size") + ylab("Species richness")