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 Invited Paper:

 THE INSIGNIFICANCE OF STATISTICAL SIGNIFICANCE TESTING

 DOUGLAS H. JOHNSON,' U.S. Geological Survey, Biological Resources Division, Northern Prairie Wildlife Research Center,
 Jamestown, ND 58401, USA

 Abstract: Despite their wide use in scientific journals such as The Journal of Wildlife Management, statistical
 hypothesis tests add very little value to the products of research. Indeed, they frequently confuse the inter-
 pretation of data. This paper describes how statistical hypothesis tests are often viewed, and then contrasts
 that interpretation with the correct one. I discuss the arbitrariness of P-values, conclusions that the null hy-
 pothesis is true, power analysis, and distinctions between statistical and biological significance. Statistical hy-
 pothesis testing, in which the null hypothesis about the properties of a population is almost always known a
 priori to be false, is contrasted with scientific hypothesis testing, which examines a credible null hypothesis
 about phenomena in nature. More meaningful alternatives are briefly outlined, including estimation and con-
 fidence intervals for determining the importance of factors, decision theory for guiding actions in the face of
 uncertainty, and Bayesian approaches to hypothesis testing and other statistical practices.

 JOURNAL OF WILDLIFE MANAGEMENT 63(3):763-772

 Key words: Bayesian approaches, confidence interval, null hypothesis, P-value, power analysis, scientific hy-
 pothesis test, statistical hypothesis test.

 Statistical testing of hypotheses in the wildlife
 field has increased dramatically in recent years.
 Even more recent is an emphasis on power
 analysis associated with hypothesis testing (The
 Wildlife Society 1995). While this trend was oc-
 curring, statistical hypothesis testing was being
 deemphasized in some other disciplines. As an
 example, the American Psychological Associa-
 tion seriously debated a ban on presenting re-
 sults of such tests in the Association's scientific

 journals. That proposal was rejected, not be-
 cause it lacked merit, but due to its appearance
 of censorship (Meehl 1997).

 The issue was highlighted at the 1998 annual
 conference of The Wildlife Society, in Buffalo,
 New York, where the Biometrics Working
 Group sponsored a half-day symposium on
 Evaluating the Role of Hypothesis Testing-
 Power Analysis in Wildlife Science. Speakers at
 that session who addressed statistical hypothesis
 testing were virtually unanimous in their opin-
 ion that the tool was overused, misused, and
 often inappropriate.

 My objectives are to briefly describe statisti-
 cal hypothesis testing, discuss common but in-
 correct interpretations of resulting P-values,
 mention some shortcomings of hypothesis test-
 ing, indicate why hypothesis testing is conduct-
 ed, and outline some alternatives.

 WHAT IS STATISTICAL HYPOTHESIS
 TESTING?

 Four basic steps constitute statistical hypoth-
 esis testing. First, one develops a null hypothesis
 about some phenomenon or parameter. This null
 hypothesis is generally the opposite of the re-
 search hypothesis, which is what the investigator
 truly believes and wants to demonstrate. Re-
 search hypotheses may be generated either in-
 ductively, from a study of observations already
 made, or deductively, deriving from theory. Next,
 data are collected that bear on the issue, typically
 by an experiment or by sampling. (Null hypoth-
 eses often are developed after the data are in
 hand and have been rummaged through, but
 that's another topic.) A statistical test of the null
 hypothesis then is conducted, which generates a
 P-value. Finally, the question of what that value
 means relative to the null hypothesis is consid-
 ered. Several interpretations of P often are made.

 Sometimes P is viewed as the probability that
 the results obtained were due to chance. Small
 values are taken to indicate that the results were

 not just a happenstance. A large value of P, say
 for a test that 1i = 0, would suggest that the
 mean AT actually recorded was due to chance,
 and [L could be assumed to be zero (Schmidt
 and Hunter 1997).

 Other times, 1-P is considered the reliability
 of the result; that is, the probability of getting- 1 E-mail: douglas-hJjohnson@nbs.gov
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 the same result if the experiment were repeat-
 ed. Significant differences are often termed "re-
 liable" under this interpretation.

 Alternatively, P can be treated as the proba-
 bility that the null hypothesis is true. This in-
 terpretation is the most direct one, as it ad-
 dresses head-on the question that interests the
 investigator.

 These 3 interpretations are what Carver
 (1978) termed fantasies about statistical signifi-
 cance. None of them is true, although they are
 treated as if they were true in some statistical
 textbooks and applications papers. Small values
 of P are taken to represent strong evidence that
 the null hypothesis is false, but workers dem-
 onstrated long ago (see references in Berger
 and Sellke 1987) that such is not the case. In
 fact, Berger and Sellke (1987) gave an example
 for which a P-value of 0.05 was attained with a

 sample of n = 50, but the probability that the
 null hypothesis was true was 0.52. Further, the
 disparity between P and Pr[Ho I data], the prob-
 ability of the null hypothesis given the observed
 data, increases as samples become larger.

 In reality, P is the Pr[observed or more ex-
 treme data I H0], the probability of the observed
 data or data more extreme, given that the null
 hypothesis is true, the assumed model is cor-
 rect, and the sampling was done .randomly. Let
 us consider the first 2 assumptions.

 What are More Extreme Data?

 Suppose you have a sample consisting of 10
 males and 3 females. For a null hypothesis of a
 balanced sex ratio, what samples would be more
 extreme? The answer to that question depends
 on the sampling plan used to collect the data
 (i.e., what stopping rule was used). The most
 obvious answer is based on the assumption that
 a total of 13 individuals was sampled. In that
 case, outcomes more extreme than 10 males
 and 3 females would be 11 males and 2 females,
 12 males and 1 female, and 13 males and no
 females.

 However, the investigator might have decided
 to stop sampling as soon as he encountered 10
 males. Were that the situation, the possible out-
 comes more extreme against the null hypothesis
 would be 10 males and 2 females, 10 males and
 1 female, and 10 males and no females. Converse-
 ly, the investigator might have collected data until
 3 females were encountered. The number of

 more extreme outcomes then are infinite: they in-
 clude 11 males and 3 females, 12 males and 3

 females, 13 males and 3 females, etc. Alternative-

 ly, the investigator might have collected data until
 the difference between the numbers of males and

 females was 7, or until the difference was signif-
 icant at some level. Each set of more extreme

 outcomes has its own probability, which, along
 with the probability of the result actually ob-
 tained, constitutes P

 The point is that determining which outcomes
 of an experiment or survey are more extreme
 than the observed one, so a P-value can be cal-
 culated, requires knowledge of the intentions of
 the investigator (Berger and Berry 1988). Hence,
 P, the outcome of a statistical hypothesis test, de-
 pends on results that were not obtained; that is,
 something that did not happen, and what the
 intentions of the investigator were.

 Are Null Hypotheses Really True?

 P is calculated under the assumption that the
 null hypothesis is true. Most null hypotheses
 tested, however, state that some parameter
 equals zero, or that some set of parameters are
 all equal. These hypotheses, called point null
 hypotheses, are almost invariably known to be
 false before any data are collected (Berkson
 1938, Savage 1957, Johnson 1995). If such hy-
 potheses are not rejected, it is usually because
 the sample size is too small (Nunnally 1960).

 To see if the null hypotheses being tested in
 The Journal of Wildlife Management can validly
 be considered to be true, I arbitrarily selected
 2 issues: an issue from the 1996 volume, the
 other from 1998. I scanned the results section

 of each paper, looking for P-values. For each P-
 value I found, I looked back to see what hy-
 pothesis was being tested. I made a very biased
 selection of some conclusions reached by re-
 jecting null hypotheses; these include: (1) the
 occurrence of sheep remains in coyote (Canis
 latrans) scats differed among seasons (P = 0.03,
 n = 467), (2) duckling body mass differed
 among years (P < 0.0001), and (3) the density
 of large trees was greater in unlogged forest
 stands than in logged stands (P = 0.02). (The
 last is my personal favorite.) Certainly we knew
 before any data were collected that the null hy-
 potheses being tested were false. Sheep remains
 certainly must have varied among seasons, if
 only between 61.1% in 1 season and 61.2% in
 another. The only question was whether or not
 the sample size was sufficient to detect the dif-
 ference. Likewise, we know before data are col-
 lected that there are real differences in the oth-
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 er examples, which are what Abelson (1997) re-
 ferred to as "gratuitous" significance testing-
 testing what is already known.

 Three comments in favor of the point null
 hypothesis, such as [L = I0o. First, while such
 hypotheses are virtually always false for sam-
 pling studies, they may be reasonable for ex-
 perimental studies in which subjects are ran-
 domly assigned to treatment groups (Mulaik et
 al. 1997). Second, testing a point null hypothesis
 in fact does provide a reasonable approximation
 to a more appropriate question: is [L nearly
 equal to pL0 (Berger and Delampady 1987, Ber-
 ger and Sellke 1987), if the sample size is mod-
 est (Rindskopf 1997). Large sample sizes will
 result in small P-values even if pi is nearly equal
 to p.0. Third, testing the point null hypothesis is
 mathematically much easier than testing com-
 posite null hypotheses, which involve noncen-
 trality parameters (Steiger and Fouladi 1997).

 The bottom line on P-values is that they re-
 late to data that were not observed under a

 model that is known to be false. How meaning-
 ful can they be? But they are objective, at least;
 or are they?

 P is Arbitrary

 If the null hypothesis truly is false (as most of
 those tested really are), then P can be made as
 small as one wishes, by getting a large enough
 sample. P is a function of (1) the difference be-
 tween reality and the null hypothesis, and (2) the
 sample size. Suppose, for example, that you are
 testing to see if the mean of a population (p.) is,
 say, 100. The null hypothesis then is Ho: p. =
 100, versus the alternative hypothesis of HI: p. #
 100. One might use Student's t-test, which is

 t - - 100) x ni

 where : is the mean of the sample, S is the
 standard deviation of the sample, and n is the
 sample size. Clearly, t can be made arbitrarily
 large (and the P-value associated with it arbitrari-
 ly small) by making either (F - 100) or
 (n-1) large enough. As the sample size in-

 creases, (: - 100) and S will approximately sta-
 bilize at the true parameter values. Hence, a
 large value of n translates into a large value of
 t. This strong dependence of P on the sample
 size led Good (1982) to suggest that P-values be
 standardized to a sample size of 100, by replac-
 ing P by P n10 (or 0.5, if that is smaller).

 Even more arbitrary in a sense than P is the

 use of a standard cutoff value, usually denoted
 a. P-values less than or equal to a are deemed
 significant; those greater than a are nonsignifi-
 cant. Use of a was advocated by Jerzy Neyman
 and Egon Pearson, whereas R. A. Fisher rec-
 ommended presentation of observed P-values
 instead (Huberty 1993). Use of a fixed a level,
 say a = 0.05, promotes the seemingly nonsen-
 sical distinction between a significant finding if
 P = 0.049, and a nonsignificant finding if P =
 0.051. Such minor differences are illusory any-
 way, as they derive from tests whose assump-
 tions often are only approximately met (Preece
 1990). Fisher objected to the Neyman-Pearson
 procedure because of its mechanical, automat-
 ed nature (Mulaik et al. 1997).

 Proving the Null Hypothesis
 Discourses on hypothesis testing emphasize

 that null hypotheses cannot be proved, they can
 only be disproved (rejected). Failing to reject a
 null hypothesis does not mean that it is true.
 Especially with small samples, one must be
 careful not to accept the null hypothesis. Con-
 sider a test of the null hypothesis that a mean
 pI equals po0. The situations illustrated in Figure
 1 both reflect a failure to reject that hypothesis.
 Figure 1A suggests the null hypothesis may well
 be false, but the sample was too small to indi-
 cate significance; there is a lack of power. Con-
 versely, Figure lB shows that the data truly
 were consistent with the null hypothesis. The 2
 situations should lead to different conclusions

 about p., but the P-values associated with the
 tests are identical.

 Taking another look at the 2 issues of The
 Journal of Wildlife Management, I noted a num-
 ber of articles that indicated a null hypothesis
 was proven. Among these were (1) no difference
 in slope aspect of random snags (P = 0.112, n =
 57), (2) no difference in viable seeds (F2,6 = 3.18,
 P = 0.11), (3) lamb kill was not correlated to
 trapper hours (r12 = 0.50, P = 0.095), (4) no
 effect due to month (P = 0.07, n = 15), and (5)
 no significant differences in survival distributions

 (P-values - 0.014!, n variable). I selected the ex- amples to illustrate null hypotheses claimed to
 be true, despite small sample sizes and P-values
 that were small but (usually) >0.05. All exam-
 ples, I believe, reflect the lack of power (Fig. 1A)
 while claiming a lack of effect (Fig. 1B).

 Power Analysis
 Power analysis is an adjunct to hypothesis

 testing that has become increasingly popular
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 Fig. 1. Results of a test that failed to reject the null hypothesis
 that a mean R equals po. Shaded areas indicate regions for
 which hypothesis would be rejected. (A) suggests the null hy-
 pothesis may well be false, but the sample was too small to
 indicate significance; there is a lack of power. (B) suggests the
 data truly were consistent with the null hypothesis.

 (Peterman 1990, Thomas and Krebs 1997). The
 procedure can be used to estimate the sample
 size needed to have a specified probability
 (power = 1 - 3) of declaring as significant (at
 the at level) a particular difference or effect (ef-
 fect size). As such, the process can usefully be
 used to design a survey or experiment (Gerard
 et al. 1998). Its use is sometimes recommended
 to ascertain the power of the test after a study
 has been conducted and nonsignificant results
 obtained (The Wildlife Society 1995). The no-
 tion is to guard against wrongly declaring the
 null hypothesis to be true. Such retrospective
 power analysis can be misleading, however.
 Steidl et al. (1997:274) noted that power esti-
 mated with the data used to test the null hy-
 pothesis and the observed effect size is mean-
 ingless, as a high P-value will invariably result
 in low estimated power. Retrospective power
 estimates may be meaningful if they are com-

 Table 1. Reaction of investigator to results of a statistical sig-
 nificance test (after Nester 1996).

 Statistical significance

 Practical importance of observed difference Not significant Significant

 Not important Happy Annoyed
 Important Very sad Elated

 puted with effect sizes different from the ob-
 served effect size. Power analysis programs,
 however, assume the input values for effect and
 variance are known, rather than estimated, so
 they give misleadingly high estimates of power
 (Steidl et al. 1997, Gerard et al. 1998). In ad-
 dition, although statistical hypothesis testing in-
 vokes what I believe to be 1 rather arbitrary
 parameter (a or P), power analysis requires 3 of
 them (a, 13, effect size). For further comments
 see Shaver (1993:309), who termed power anal-
 ysis "a vacuous intellectual game," and who not-
 ed that the tendency to use criteria, such as Co-
 hen's (1988) standards for small, medium, and
 large effect sizes, is as mindless as the practice
 of using the a = 0.05 criterion in statistical sig-
 nificance testing. Questions about the likely size
 of true effects can be better addressed with

 confidence intervals than with retrospective
 power analyses (e.g., Steidl et al. 1997, Steiger
 and Fouladi 1997).

 Biological Versus Statistical Significance

 Many authors make note of the distinction
 between statistical significance and subject-mat-
 ter (in our case, biological) significance. Unim-
 portant differences or effects that do not attain
 significance are okay, and important differences
 that do show up significant are excellent, for
 they facilitate publication (Table 1). Unimpor-
 tant differences that turn out significant are an-
 noying, and important differences that fail sta-
 tistical detection are truly depressing. Recalling
 our earlier comments about the effect of sample
 size on P-values, the 2 outcomes that please the
 researcher suggest the sample size was about
 right (Table 2). The annoying unimportant dif-

 Table 2. Interpretation of sample size as related to results of
 a statistical significance test.

 Statistical significance
 Practical importance
 of observed difference Not significant Significant

 Not important n okay n too big
 Important n too small n okay
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 ferences that were significant indicate that too
 large a sample was obtained. Further, if an im-
 portant difference was not significant, the in-
 vestigator concludes that the sample was insuf-
 ficient and calls for further research. This

 schizophrenic nature of the interpretation of
 significance greatly reduces its value.

 Other Comments on Hypothesis Tests

 Statistical hypothesis testing has received an
 enormous amount of criticism, and for a rather
 long time. In 1963, Clark (1963:466) noted that
 it was "no longer a sound or fruitful basis for
 statistical investigation." Bakan (1966:436)
 called it "essential mindlessness in the conduct

 of research." The famed quality guru W. Ed-
 wards Deming (1975) commented that the rea-
 son students have problems understanding hy-
 pothesis tests is that they may be trying to think.
 Carver (1978) recommended that statistical sig-
 nificance testing should be eliminated; it is not
 only useless, it is also harmful because it is in-
 terpreted to mean something else. Guttman
 (1985) recognized that "In practice, of course,
 tests of significance are not taken seriously."
 Loftus (1991) found it difficult to imagine a less
 insightful way to translate data into conclusions.
 Cohen (1994:997) noted that statistical testing
 of the null hypothesis "does not tell us what we
 want to know, and we so much want to know
 what we want to know that, out of desperation,
 we nevertheless believe that it does!" Barnard

 (1998:47) argued that ".... simple P-values are
 not now used by the best statisticians." These
 examples are but a fraction of the comments
 made by statisticians and users of statistics
 about the role of statistical hypothesis testing.
 While many of the arguments against signifi-
 cance tests stem from their misuse, rather than
 their intrinsic values (Mulaik et al. 1997), I be-
 lieve that 1 of their intrinsic problems is that
 they do encourage misuse.

 WHY ARE HYPOTHESIS TESTS USED?

 With all the deficiencies of statistical hypoth-
 esis tests, it is reasonable to wonder why they
 remain so widely used. Nester (1996) suggested
 several reasons: (1) they appear to be objective
 and exact; (2) they are readily available and eas-
 ily invoked in many commercial statistics pack-
 ages; (3) everyone else seems to use them; (4)
 students, statisticians, and scientists are taught
 to use them; and (5) some journal editors and
 thesis supervisors demand them. Carver (1978)

 recognized that statistical significance is gener-
 ally interpreted as having some relation to rep-
 lication, which is the cornerstone of science.
 More cynically, Carver (1978) suggested that
 complicated mathematical procedures lend an
 air of scientific objectivity to conclusions. Shav-
 er (1993) noted that social scientists equate be-
 ing quantitative with being scientific. D. V.
 Lindley (quoted in Matthews 1997) observed
 that "People like conventional hypothesis tests
 because it's so easy to get significant results
 from them."

 I attribute the heavy use of statistical hypoth-
 esis testing, not just in the wildlife field but in
 other "soft" sciences such as psychology, soci-
 ology, and education, to "physics envy." Physi-
 cists and other researchers in the "hard" sci-

 ences are widely respected for their ability to
 learn things about the real world (and universe)
 that are solid and incontrovertible, and also
 yield results that translate into products that we
 see daily. Psychologists, for 1 group, have diffi-
 culty developing tests that are able to distin-
 guish 2 competing theories.

 In the hard sciences, hypotheses are tested;
 that process is an integral component of the hy-
 pothetico-deductive scientific method. Under
 that method, a theory is postulated, which gen-
 erates several predictions. These predictions are
 treated as scientific hypotheses, and an experi-
 ment is conducted to try to falsify each hypoth-
 esis. If the results of the experiment refute the
 hypothesis, that outcome implies that the theory
 is incorrect and should be modified or scrapped.
 If the results do not refute the hypothesis, the
 theory stands and may gain support, depending
 on how critical the experiment was.

 In contrast, the hypotheses usually tested by
 wildlife ecologists do not devolve from general
 theories about how the real world operates.
 More typically they are statistical hypotheses
 (i.e., statements about properties of popula-
 tions; Simberloff 1990). Unlike scientific hy-
 potheses, the truth of which is truly in question,
 most statistical hypotheses are known a priori to
 be false. The confusion of the 2 types of hy-
 potheses has been attributed to the pervasive
 influence of R. A. Fisher, who did not distin-
 guish them (Schmidt and Hunter 1997).

 Scientific hypothesis testing dates back at
 least to the 17th century: in 1620, Francis Ba-
 con discussed the role of proposing alternative
 explanations and conducting explicit tests to dis-
 tinguish between them as the most direct route
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 to scientific understanding (Quinn and Dunham
 1983). This concept is related to Popperian in-
 ference, which seeks to develop and test hy-
 potheses that can clearly be falsified (Popper
 1959), because a falsified hypothesis provides
 greater advance in understanding than does a
 hypothesis that is supported. Also similar is
 Platt's (1964) notion of strong inference, which
 emphasizes developing alternative hypotheses
 that lead to different predictions. In such a case,
 results inconsistent with predictions from a hy-
 pothesis cast doubt of its validity.

 Examples of scientific hypotheses, which
 were considered credible, include Copernicus'
 notion HA: the Earth revolves around the sun,
 versus the conventional wisdom of the time, Ho:
 the sun revolves around the Earth. Another ex-

 ample is Fermat's last theorem, which states
 that for integers n, X, Y, and Z, X" + Yn = Zn
 implies n - 2. Alternatively, a physicist may
 make specific predictions about a parameter
 based on a theory, and the theory is provision-
 ally accepted only if the outcomes are within
 measurement error of the predicted value, and
 no other theories make predictions that also fall
 within that range (Mulaik et al. 1997). Contrast
 these hypotheses, which involve phenomena in
 nature, with the statistical hypotheses presented
 in The Journal of Wildlife Management, which
 were mentioned above, and which involve prop-
 erties of populations.

 Rejection of a statistical hypothesis would con-
 stitute a piece of evidence to be considered in
 deciding whether or not to reject a scientific hy-
 pothesis (Simberloff 1990). For example, a sci-
 entific hypothesis might state that clutch sizes of
 birds increase with the age of the bird, up to
 some plateau. That idea would generate a hy-
 pothesis that could be tested statistically within
 a particular population of birds. A single such
 test, regardless of its P-value, would little affect
 the credibility of the scientific hypothesis, which
 is far more general. A related distinction is that
 scientific hypotheses are global, applying to all of
 nature, while statistical hypotheses are local, ap-
 plying to particular systems (Simberloff 1990).

 Why do we wildlife ecologists rarely test sci-
 entific hypotheses? My view is that we are deal-
 ing with systems more complex than those faced
 by physicists. A saying in ecology is that every-
 thing is connected to everything else. (In psy-
 chology, "everything correlates with everything,"
 giving rise to what David Lykken called the
 "crud factor" for such ambient correlation noise

 [Meehl 1997]). This saying implies that all vari-
 ables in an ecological system are intercorrelated,
 and that any null hypothesis postulating no effect
 of a variable on another will in fact be false; a
 statistical test of that hypothesis will be rejected,
 as long as the sample is sufficiently large. This
 line of reasoning does not denigrate the value of
 experimentation in real systems; ecologists
 should seek situations in which variables thought
 to be influential can be manipulated and the re-
 sults carefully monitored (Underwood 1997).
 Too often, however, experimentation in natural
 systems is very difficult if not impossible.

 REPLICATION

 Replication is a cornerstone of science. If re-
 sults from a study cannot be reproduced, they
 have no credibility. Scale is important here.
 Conducting the same study at the same time
 but at several different sites and getting com-
 parable results is reassuring, but not nearly so
 convincing as having different investigators
 achieve similar results using different methods
 in different areas at different times. R. A. Fish-

 er's idea of solid knowledge was not a single
 extremely significant result, but rather the abil-
 ity of repeatedly getting results significant at 5%
 (Tukey 1969). Shaver (1993:304) observed that
 "The question of interest is whether an effect
 size of a magnitude judged to be important has
 been consistently obtained across valid replica-
 tions. Whether any or all of the results are sta-
 tistically significant is irrelevant." Replicated re-
 sults automatically make statistical significance
 testing unnecessary (Bauernfeind 1968).

 Individual studies rarely contain sufficient in-
 formation to support a final conclusion about the
 truth or value of a hypothesis (Schmidt and
 Hunter 1997). Studies differ in design, measure-
 ment devices, samples included, weather condi-
 tions, and many other ways. This variability
 among studies is more pervasive in ecological sit-
 uations than in, for example, the physical scienc-
 es (Ellison 1996). To have generality, results
 should be consistent under a wide variety of cir-
 cumstances. Meta-analysis provides some tools
 for combining information from repeated studies

 (e.g., Hedges and Olkin 1985) and can reduce
 dependence on significance testing by examining
 replicated studies (Schmidt and Hunter 1997).
 Meta-analysis can be dangerously misleading,
 however, if nonsignificant results or results that
 did not conform to the conventional wisdom

 were less likely to have been published.
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 WHAT ARE THE ALTERNATIVES?

 What should we do instead of testing hypoth-
 eses? As Quinn and Dunham (1983) pointed
 out, it is more fruitful to determine the relative

 importance to the contributions of, and inter-
 actions between, a number of processes. For
 this purpose, estimation is far more appropriate
 than hypothesis testing (Campbell 1992). For
 certain other situations, decision theory is an
 appropriate tool. For either of these applica-
 tions, as well as for hypothesis testing itself, the
 Bayesian approach offers some distinct advan-
 tages over the traditional methods. These alter-
 natives are briefly outlined below. Although the
 alternatives will not meet all potential needs,
 they do offer attractive choices in many fre-
 quently encountered situations.

 Estimates and Confidence Intervals

 Four decades ago, Anscombe (1956) ob-
 served that statistical hypothesis tests were to-
 tally irrelevant, and that what was needed were
 estimates of magnitudes of effects, with stan-
 dard errors. Yates (1964) indicated that "The
 most commonly occurring weakness in the ap-
 plication of Fisherian methods is undue em-
 phasis on tests of significance, and failure to
 recognize that in many types of experimental
 work estimates of the treatment effects, togeth-
 er with estimates of the errors to which they are
 subject, are the quantities of primary interest."
 Further, because wildlife ecologists want to in-
 fluence management practices, Johnson (1995)
 noted that, "If ecologists are to be taken seri-
 ously by decision makers, they must provide in-
 formation useful for deciding on a course of ac-
 tion, as opposed to addressing purely academic
 questions." To enforce that point, several edu-
 cation and psychological journals have adopted
 editorial policies requiring that parameter esti-
 mates accompany any P-values be presented
 (McLean and Ernest 1998).

 Ordinary confidence intervals provide more
 information than do P-values. Knowing that a
 95% confidence interval includes zero tells one

 that, if a test of the hypothesis that the param-
 eter equals zero is conducted, the resulting P-
 value will be >0.05. A confidence interval pro-
 vides both an estimate of the effect size and a

 measure of its uncertainty. A 95% confidence
 interval of, say, (-50, 300) suggests the param-
 eter is less well estimated than would a confi-

 dence interval of (120, 130). Perhaps surpris-

 ingly, confidence intervals have a longer history
 than statistical hypothesis tests (Schmidt and
 Hunter 1997).

 With its advantages and longer history, why
 have confidence intervals not been used more

 than they have? Steiger and Fouladi (1997) and
 Reichardt and Gollob (1997) posited several ex-
 planations: (1) hypothesis testing has become a
 tradition; (2) the advantages of confidence in-
 tervals are not recognized; (3) there is some ig-
 norance of the procedures available; (4) major
 statistical packages do not include many confi-
 dence interval estimates; (5) sizes of parameter
 estimates are often disappointingly small, even
 though they may be very significantly different
 from zero; (6) the wide confidence intervals that
 often result from a study are embarrassing; (7)
 some hypothesis tests (e.g., chi-square contin-
 gency table) have no uniquely defined param-
 eter associated with them; and (8) recommen-
 dations to use confidence intervals often are ac-

 companied by recommendations to abandon
 statistical tests altogether, which is unwelcome
 advice. These reasons are not valid excuses for

 avoiding confidence intervals in lieu of hypoth-
 esis tests in situations for which parameter es-
 timation is the objective.

 Decision Theory

 Often experiments or surveys are conducted to
 help make some decision, such as what limits to
 set on hunting seasons, if a forest stand should be
 logged, or if a pesticide should be approved. In
 those cases, hypothesis testing is inadequate, for
 it does not take into consideration the costs of
 alternative actions. Here a useful tool is statistical

 decision theory: the theory of acting rationally
 with respect to anticipated gains and losses, in the
 face of uncertainty. Hypothesis testing generally
 limits the probability of a Type I error (rejecting
 a true null hypothesis), often arbitrarily set at a
 = 0.05, while letting the probability of a Type II
 error (accepting a false null hypothesis) fall where
 it may. In ecological situations, however, a Type
 II error may be far more costly than a Type I
 error (Toft and Shea 1983). As an example, ap-
 proving a pesticide that reduces the survival rate
 of an endangered species by 5% may be disas-
 trous to that species, even if that change is not
 statistically detectable. As another, continued
 overharvest in marine fisheries may result in the
 collapse of the ecosystem even while statistical
 tests are unable to reject the null hypothesis that
 fishing has no effect (Dayton 1998). Details on
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 decision theory can be found in DeGroot (1970),
 Berger (1985), and Pratt et al. (1995).

 Model Selection

 Statistical tests can play a useful role in di-
 agnostic checks and evaluations of tentative sta-
 tistical models (Box 1980). But even for this ap-
 plication, competing tools are superior. Infor-
 mation criteria, such as Akaike's, provide objec-
 tive measures for selecting among different
 models fitted to a dataset. Burnham and An-

 derson (1998) provided a detailed overview of
 model selection procedures based on informa-
 tion criteria. In addition, for many applications
 it is not advisable to select a "best" model and

 then proceed as if that model was correct.
 There may be a group of models entertained,
 and the data will provide different strength of
 evidence for each model. Rather than basing
 decisions or conclusions on the single model
 most strongly supported by the data, one should
 acknowledge the uncertainty about the model
 by considering the entire set of models, each
 perhaps weighted by its own strength of evi-
 dence (Buckland et al. 1997).

 Bayesian Approaches
 Bayesian approaches offer some alternatives

 preferable to the ordinary (often called fre-
 quentist, because they invoke the idea of the
 long-term frequency of outcomes in imagined
 repeats of experiments or samples) methods for
 hypothesis testing, as well as for estimation and
 decision-making. Space limitations preclude a
 detailed review of the approach here; see Box
 and Tiao (1973), Berger (1985), and Carlin and
 Louis (1996) for longer expositions, and Schmitt
 (1969) for an elementary introduction.

 Sometimes the value of a parameter is pre-
 dicted from theory, and it is more reasonable to
 test whether or not that value is consistent with
 the observed data than to calculate a confidence

 interval (Berger and Delampady 1987, Zellner
 1987). For testing such hypotheses, what is usu-
 ally desired (and what is sometimes believed to
 be provided by a statistical hypothesis test) is
 Pr[Ho I data]. What is obtained, as pointed out
 earlier, is P = Pr[observed or more extreme
 data I Ho]. Bayes' theorem offers a formula for
 converting between them.

 Pr[data I Ho]Pr[H0
 Pr[Ho0 data] Pr[data]

 This is an old (Bayes 1763) and well-known the-

 orem in probability. Its use in the present sit-
 uation does not follow from the frequentist view
 of statistics, which considers Pr[Ho] as un-
 known, but either zero or 1. In the Bayesian
 approach, Pr[H0] is determined before data are
 gathered; it is therefore called the prior prob-
 ability of H0. Pr[H0] can be determined either
 subjectively (what is your prior belief about the
 truth of the null hypothesis?) or by a variety of
 objective means (e.g., Box and Tiao 1973, Car-
 lin and Louis 1996). The use of subjective prob-
 abilities is a major reason that Bayesian ap-
 proaches fell out of favor: science must be ob-
 jective! (The other main reason is that Bayesian
 calculations tend to get fairly heavy, but modern
 computer capabilities can largely overcome this
 obstacle.)

 Briefly consider parameter estimation. Sup-
 pose you want to estimate a parameter 0. Then
 replacing H0o by 0 in the above formula yields

 Pr[data] Pr[data i 0]Pr[O] Pr[data]

 which provides an expression that shows how
 initial knowledge about the value of a parame-
 ter, reflected in the prior probability function
 Pr[0], is modified by data obtained from a study,
 Pr[data I 0], to yield a final probability function,
 Pr[0 I data]. This process of updating beliefs
 leads in a natural way to adaptive resource man-
 agement (Holling 1978, Walters 1986), a recent
 favorite topic in wildlife science (e.g., Walters
 and Green 1997).

 Bayesian confidence intervals are much more
 natural than their frequentist counterparts. A fre-
 quentist 95% confidence interval for a parameter
 0, denoted (OL, O,), is interpreted as follows: if
 the study were repeated an infinite number of
 times, 95% of the confidence intervals that re-

 sulted would contain the true value 0. It says
 nothing about the particular study that was ac-
 tually conducted, which led Howson and Urbach
 (1991:373) to comment that "statisticians regu-
 larly say that one can be '95 per cent confident'
 that the parameter lies in the confidence interval.
 They never say why." In contrast, a Bayesian con-
 fidence interval, sometimes called a credible in-

 terval, is interpreted to mean that the probability
 that the true value of the parameter lies in the
 interval is 95%. That statement is much more

 natural, and is what people think a confidence
 interval is, until they get the notion drummed
 out of their heads in statistics courses.

 For decision analysis, Bayes' theorem offers
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 a very logical way to make decisions in the face
 of uncertainty. It allows for incorporating be-
 liefs, data, and the gains or losses expected from
 possible consequences of decisions. See Wolf-
 son et al. (1996) and Ellison (1996) for recent
 overviews of Bayesian methods with an ecolog-
 ical orientation.

 CONCLUSIONS

 Editors of scientific journals, along with the
 referees they rely on, are really the arbiters of
 scientific practice. They need to understand
 how statistical methods can be used to reach
 sound conclusions from data that have been

 gathered. It is not sufficient to insist that au-
 thors use statistical methods-the methods

 must be appropriate to the application. The
 most common and flagrant misuse of statistics,
 in my view, is the testing of hypotheses, espe-
 cially the vast majority of them known before-
 hand to be false.

 With the hundreds of articles already pub-
 lished that decry the use of statistical hypothesis
 testing, I was somewhat hesitant about writing
 another. It contains nothing new. But still, read-
 ing The Journal of Wildlife Management makes
 me realize that the message has not really
 reached the audience of wildlife biologists. Our
 work is important, so we should use the best
 tools we have available. Rarely, however, is that
 tool statistical hypothesis testing.
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