
SPECIAL FEATURE: 5TH ANNIVERSARYOFMETHODS INECOLOGYANDEVOLUTION

Aprotocol for conducting and presenting results of

regression-type analyses

Alain F. Zuur1* and ElenaN. Ieno2

1Highland Statistics Ltd., 9 St ClairWynd, Newburgh AB41 6DZ, UK; and 2Highland Statistics Ltd., Av Finlandia 11, Bwg 34,

Santa Pola, Spain

Summary

1. Scientific investigation is of value only insofar as relevant results are obtained and communicated, a task that

requires organizing, evaluating, analysing and unambiguously communicating the significance of data. In this

context, working with ecological data, reflecting the complexities and interactions of the natural world, can be a

challenge. Recent innovations for statistical analysis of multifaceted interrelated datamake obtainingmore accu-

rate and meaningful results possible, but key decisions of the analyses to use, and which components to present

in a scientific paper or report, may be overwhelming.

2. We offer a 10-step protocol to streamline analysis of data that will enhance understanding of the data, the sta-

tistical models and the results, and optimize communication with the reader with respect to both the procedure

and the outcomes. The protocol takes the investigator from study design and organization of data (formulating

relevant questions, visualizing data collection, data exploration, identifying dependency), through conducting

analysis (presenting, fitting and validating the model) and presenting output (numerically and visually), to

extending the model via simulation. Each step includes procedures to clarify aspects of the data that affect statis-

tical analysis, as well as guidelines for written presentation. Steps are illustrated with examples using data from

the literature.

3. Following this protocol will reduce the organization, analysis and presentation of whatmay be an overwhelm-

ing information avalanche into sequential and, more to the point, manageable, steps. It provides guidelines for

selecting optimal statistical tools to assess data relevance and significance, for choosing aspects of the analysis to

include in a published report and for clearly communicating information.
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Introduction

The statistical analysis of ecological data often presents unique

challenges. There may be outliers, correlation between covari-

ates (collinearity), nonlinear relationships among variables,

many zero observations, and spatial and temporal dependency

structures. The past two decades have seen a surge in develop-

ment of statistical techniques to analyse such complex data.

Here, we present a 10-step protocol (Fig. 1) for the analysis

and presentation of ecological data. This protocol will help the

author to understand the data and select appropriate statistical

models, verify all assumptions, check that the models

employed are appropriate, interpret the output and present it

in written form.

We focus here on regression-type models such as multiple

linear regression, linear mixed modelling, generalized linear

(mixed) modelling and generalized additive (mixed) modelling,

although similar steps can be followed for analyses based on

other statistical approaches. In this paper, we use the free

software package R (R Core Team, 2014), but the protocol is

not specifically linked to R.

Adherence to this protocol will provide the reader with

insight into the process of the data collection and analysis, how

the results were obtained and the validity of the modelling. It

will facilitate clear communication to the reader and increase

the credibility of the analysis and the potential for the work to

be accepted for publication.

Step 1: State appropriate questions

In the Introduction to a paper or report, present the underlying

biological questions.

Formulating the salient questions prior to gathering data is

critical, as it influences the sampling design (Field & Hole

2003) and allows translation of the questions to a statistical

model. Presentation of the questions immediately informs the

reader of the purpose of the study.

As an example, we use data from Roulin & Bersier (2007),

who investigated vocal behaviour of barn owl siblings. One of

their primary questions was whether the vocal response of

chicks differs depending on the sex of the parent providing*Correspondence author. E-mail: highstat@highstat.com
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food. They designed a study in which data were collected from

27 barn owl nests. Using microphones, they sampled the num-

ber of calls (sibling negotiation) that chicks produced during a

short time period. Since food availability may influence how

chicks respond via sibling negotiation to the parent bird, chicks

in half the nests were provided with extra prey in the morning

preceding recording, and prey remains were removed from the

other nests (food treatment, satiated or deprived). Sampling

was carried out between 21�30 and 05�30. The underlying ques-
tion means that, in the Methods section, we can present a

model that uses the three covariates time, food treatment and

sex of parent as main terms. We can assess the importance of

each of these covariates, taking into account the partial effects

of all three.

We can formulate the biological question as ‘Does the rela-

tionship between sibling negotiation and sex of the parent dif-

fer with food treatment, and does the effect of time on sibling

negotiation differ with food treatment?’ This question means

that we need to apply a model that contains all the three main

terms and relevant two-way interactions.

It is important to avoid using separate questions such as ‘Is

there an effect of sex of the parent?’ ‘Is there a time effect?’ and

‘Is there a food treatment effect?’ This would require that three

models be fitted, using a single covariate in each model. A

potential problem with this approach is that the residuals of

onemodel may show patterns when compared with the covari-

ates not used in that model, which invalidates the model

assumptions.

Step 2: Visualize the experimental design

It is essential that the sampling process be explained in such a

way that the reader can immediately comprehend it.

Graphs may be more effective than text in presenting infor-

mation on variables sampled and how the sampling was con-

ducted (Field&Hole 2003).

Figure 2 illustrates where the barn owl sampling took place.

It is apparent that we have data from a relatively large number

of nests in Switzerland, all within 10–15 km of one another. It

is possible to extend this to a graph showing which nests were

sampled on a given date and the sampling time per nest each

night (see Data accessibility for R code for such a graph). These

data are readily illustrated inmultipanel time-series plots.

Create as many graphs that are necessary to allow yourself

to clearly visualize the experimental set-up, as this is closely

related to Step 4 (dependency) of this protocol. When present-

ing results, a single graph is sufficient.

Step 3: Conduct data exploration

Data exploration is a crucial step in data analysis.

Data exploration provides insight into the data and helps

familiarize the author with all aspects of his/her own data and,

importantly, its limitations (Chatfield 1995; Quinn & Keough

2002; Zuur, Ieno&Elphick 2010; Ieno&Zuur 2015). The limi-

tations have consequences for the choice of models to be

applied. Zuur, Ieno & Elphick (2010) described a 10-step pro-

tocol for data exploration consisting of investigation of out-

liers, homogeneity, normality, zero trouble, collinearity,

relationships, interactions and independence.

As an example, we use an oystercatcher feeding data set

(Ieno & Zuur 2015). The aim of the study was to investigate

how the relationship between the length of clams preyed upon

by oystercatchers and feeding type (hammering or stabbing)

differs with month (December and January) and feeding plot

(three locations), which led to creation of a model containing a

three-way interaction term. However, detailed data explo-

ration showed that, for stabbers in location A in December,

there were only two observations, both showing the same value

(Fig. 3). If we had ignored this situation and applied amultiple

linear regression model with all main terms and interaction

terms, the significance of the three-way interaction term, and

therefore the principal biological conclusion, would have been

driven only by these two observations.

Expect to spend a considerable amount of time on data

exploration. The Methods section can include the statement

that ‘Data exploration was carried out following the protocol

described in Zuur, Ieno & Elphick (2010)’. The results of the

data exploration can be summarized in the Results section in

two or three lines of text. A graph, such as amultipanel scatter-

plot, depicting the datamay be helpful.

Step 4: Identify the dependency structure in the
data

It is rare to encounter a data set in which the observations of the

response variable are independent.

Hurlbert (1984) discussed the lack of statistical indepen-

dence of replicates (pseudoreplication) in ecological field exper-

iments. Pseudoreplication in regression models results in

Fig. 1. Protocol for statistical analysis of data and presenting results in

a scientific paper.
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biased parameter estimates and increased type I errors. Pseu-

doreplication may be dealt with by applying a generalized lin-

ear mixed-effects model (GLMM) (Pinheiro & Bates 2000;

Bolker 2008; Zuur et al. 2009; Zuur, Saveliev & Ieno 2012;

Zuur, Hilbe & Ieno 2013). The GLMM entered the ecological

data analysis toolbox in the past 10 years, and its execution is

not routinely taught in many university statistics courses for

ecologists.

Identifying the dependency structure of an ecological study

is not always simple, as the following example shows. Sick

et al. (2014a, b) investigated social strategies throughout the

course of the day in chacma baboons Papio ursinus. Data were
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Fig. 3. Length of clams preyed upon by oys-

tercatchers vs. month, feeding type and feed-

ing plot. Note the two points with the same

value in the top left panel. A small amount of

random noise was added to each point to dif-

ferentiate observations with the same value.
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collected from 60 baboons from two troops in the Tsaobis

Leopard Park inNamibia. An individual baboonwas followed

for 1 h (focal hour), during which its grooming and dominance

interactions were recorded, including the identity of the

baboon being groomed (receiver). Multiple observations of the

same baboon in a focal hour was the first source of depen-

dency. During the 6-month sampling period, each baboon was

repeatedly sampled, which is another source of dependency.

To increase complexity, the receiver represents another level of

dependency. Dealing with the pseudoreplication requires a

mixed-effects model with a two-way nested and crossed ran-

dom effect. The response variable was the difference in rank

within the troop of the groomer and the receiver, represented

as a value ranging from 0 to 1.

A flow chart may help clarify the dependency structure in

the experimental design (Fig. 4). Readers may not be familiar

with the purpose of, or need for, complex models; thus, the

Methods section can include a short explanation of the applied

statistical models and justify their use. State clearly which

observations of the response variable are dependent, as they

account for the components of the model that deal with depen-

dent data. You can include a statement such as ‘This data set

consists of multiple observations of rank differences of a given

baboon and receivers within a focal hour, along with multiple

observations of a given receiver.We therefore applied amixed-

effects model with the random effect focal hour nested within

the random effect baboon and a crossed random effect receiver’.

You can present a figure describing the dependency structure

(Fig. 4) or text alone.

A similar statement for the owl data could be ‘We sampled

each nest multiple times and therefore applied a GLMM in

which nest is used as random intercept, as this models a depen-

dency structure among sibling negotiation observations of the

same nest’.

Step 5: Present the statisticalmodel

Presenting a statistical model as mathematical notation facili-

tates comprehension of how the data fit into the analysis. Pre-

senting it in a paper clarifies the process for the reader.

In order to ensure that results are replicable, it is crucial to

clearly specify the covariates and how they were used

(categorical or continuous), interactions, random effects, dis-

tribution of the response variable, etc. Recording the statistical

models in mathematical terms during the analysis may avoid

fitting ill-formulated models and, consequently, software

warnings and errormessages.

The equation can be presented in mathematical notation

containing all regression parameters and indices or in words,

as in eqn (1). The latter approach is easier on the eye when the

covariates contain categorical covariates of more than two

levels.

For the owl data, we can state ‘To model the number of sib-

ling calls as a function of the covariates, a Poisson GLMM

with a log link function was used [Equation (1)]. The log link

function ensures positive fitted values, and the Poisson distri-

bution is typically used for count data. Fixed covariates are sex

of the parent (categorical with two levels), arrival time (continu-

ous) and food treatment (categorical with two levels). The inter-

action terms are food treatment 9 sex of parent and food

treatment 9 arrival time. To incorporate the dependency

among observations of the same nest, we used nest as random

intercept.

NCallsij�PoissonðlijÞ
EðNCallsijÞ¼lij

logðlijÞ¼SexParentijþFoodTreatmentij

þArrivalTimeijþSexParentij�FoodTreatmentij

þSexParentij�ArrivalTimeijþNesti

Nesti�Nð0;r2Þ

;

(eqn1)

where NCallsij is the jth observation in nest i, and i = 1,. . ., 27,

and Nesti is the random intercept, which is assumed to be nor-

mally distributed withmean 0 and variancer2.

The equation, along with the introductory paragraph,

clearly shows the distribution used for the response variable,

the covariates included, whether they are categorical or contin-

uous and why an advanced model like a GLMM is being used

to incorporate a dependency structure via the use of random

intercepts.

The goal of the baboon study was to learn how social rela-

tionships change over short time-scales, and one specific ques-

tion was whether subordinate groomers are more likely to

Hour 1   Hour 12  Hour 50

Baboon 1 Baboon 2        ......      ......      ......      ......      ......      ......      Baboon 60

Hour 2   Hour 20  Hour 40 Hour 3   Hour 11  Hour 39

Baboon 1 Baboon 2        ......      ......      ......      ......      ......      ......      Baboon 60

.   .   .    .    .   .      .  .  .    .     .  . .  .  .     . .      .

Fig. 4. Nested structure for the baboon data.

Top row: A baboon is randomly selected.

During a focal hour (second row), multiple

observations are made. Dots represent the

observations. The bottom row shows that

receivers are repeatedly sampled.
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groom dominate animals earlier in the day. This behaviour

might be affected by the relatedness of groomer and receiver as

well as group size. The Methods section can include ‘We mod-

elled the rank difference of groomer and receiver as a function

of relatedness of groomer and receiver, group size (small versus

large), time (of day), and the interactions time 9 relatedness

and group size 9 relatedness. The response variable (rank dif-

ference) was coded as a value from 0 to 1; therefore, a beta dis-

tribution with a logistic link function was used’.

For the benefit of readers unfamiliar with beta distribution,

include a sentence stating that ‘To ensure that the fitted values

range from 0 to 1, we cannot use a Gaussian linear mixed-

effects model and instead apply a model with a beta distribu-

tion, which can be used if the response variable is a continuous

variable ranging from x1 and x2, with a logistic link function’.

The model specification will be of value to readers not familiar

with this type ofmodel. The initial model is of the form

RDijk �BetaðpijkÞ
EðRDijkÞ ¼ pijk

varðRDÞijk ¼ pijk � ð1� pijkÞ=ð1þ hÞ
logitðpijkÞ ¼ Timeijk þRelatednessijk þGroupSizeijk

þ Timeijk �Relatednessijk

þRelatednessijk �GroupSizeijk þGroomeri

þHourj þReceiverl

Groomeri �Nð0;r2
GroomerÞ

Hourj �Nð0;r2
HourÞ

Receiverl �Nð0;r2
ReceiverÞ

;

(eqn 2)

where RDijk is the kth observed rank difference between groo-

mer i and receiver l in hour j, and h is an unknown parameter

controlling the variance.

In eqn (2), we can see which terms are used as random inter-

cepts, which covariates are used as main terms and the interac-

tions included. Writing this equation out during the analysis

clarifies the function of each component in themodel.

Step 6: Fit themodel

Fitting the model should be the straightforward part of the

analysis.

One of the most popular statistical software packages avail-

able is R. R software code for a wide variety of statistical tech-

niques can be found in Venables & Ripley (2002), Dalgaard

(2002), Crawley (2012) and in textbooks containing detailed R

code for more specific topics, for instance Pinheiro & Bates

(2000), Bolker (2008), and Zuur et al. (2009), Zuur, Hilbe &

Ieno (2013) for mixed modelling; and Wood (2006) and Zuur

(2012), Zuur, Saveliev & Ieno 2014) for GAM and generalized

additivemixed-effectsmodel (GAMM).

In the Methods section, mention the software and R pack-

ages that you used. The citation() command in R shows how

to do this. For all R packages used, include a sentence such as

‘the package lme4 (Bates et al. 2014) in the software R (R Core

Team 2014) was used to fit themodel in Equation (1)’.

Recent years have seen a rise in applied statistics textbooks

that use Bayesian analysis (McCarthy 2007; K�ery 2010; Lunn

et al. 2012; Zuur, Hilbe & Ieno 2013; Zuur, Saveliev & Ieno

2014; Korner-Nievergelt et al. 2015), and, while this technique

will become widespread in future ecology studies, it may be

some time before readers are familiar with it. The use of Baye-

sian methods such as Markov chain Monte Carlo (MCMC)

techniquesmay require a short one-line explanation in a paper.

‘A Bayesian analysis framework with MCMC was adopted to

fit the model in Equation (2). MCMC is essentially a simula-

tion technique to obtain the distribution of each parameter in a

model’, may clarify the approach.

When reportingMCMC analysis, include a statement in the

Methods section such as ‘To fit the model in Equation (2),

MCMC was applied using JAGS (Plummer 2003) via the

package R2jags (Su &Yajima 2012) in R (R Core Team 2014).

We used a burn-in of 50 000 iterations, three chains, a thinning

rate of 10 and 15 000 iterations for each posterior distribution.

Diffuse normal priors were used for the regression parameters

and diffuse uniform priors for the standard deviation parame-

ters’. In the Results section, state ‘Mixing of the chains was

good’. Reviewers and readers may not be familiar with Baye-

sian concepts such as mixing, chains. You may need to explain

in a few sentences the workings ofMCMC and the meaning of

thinning, mixing, chains and burn-in.

Step 7: Validate themodel

Model validation confirms that the model complies with underly-

ing assumptions.

All regression-type techniques are based on a series of

assumptions, those of prime importance being independence

and absence of residual patterns. Violation of these assump-

tionsmay result in biased parameter estimates and type I errors

(Quinn & Keough 2002). To validate the fitted models, stan-

dardized or Pearson residuals must be plotted against fitted

values, against each covariate in the model, against each

covariate not in the model and against time and space coordi-

nates, if relevant (Zuur et al. 2009). If the data include tempo-

ral or spatial aspects, use autocorrelation functions and/or

variograms to assess independence of residuals (Schabenberger

& Pierce 2002).

The Methods section can include ‘Model assumptions were

verified by plotting residuals versus fitted values, versus each

covariate in the model and versus each covariate not in the

model. We assessed the residuals for temporal and spatial

dependency’. In the Results section, state ‘Model validation

indicated no problems’, assuming that this was the case. Itmay

be an option to include one or two graphs in an online Sup-

porting information. Be prepared to provide these graphs if a

reviewer asks for them.

We present an example of how model validation detected

problems in the Poisson GLMM applied to the owl data.

When conducting model validation for the Poisson GLMM,

we calculated a dispersion statistic as 5�43, indicating overdis-

persion. It is important to find the source of the overdispersion

and adjust the model accordingly (Hilbe 2011), or the

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 7, 636–645
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estimated parameters may be biased and standard errors too

small. To identify the cause of overdispersion, we plotted Pear-

son residuals vs. arrival time (Fig. 5). The graph showed a clear

pattern, indicating that we may need to allow for a nonlinear

arrival time effect. Other factors contributing to the overdisper-

sion may have been a missing covariate, the relatively large

number of zero observations (25%) or dependency within (or

between) nests.

Step 8: Interpret and present the numerical output
of themodel

Grasping the biological relevance of the numerical output of a

statistical model may be a challenge for readers.

R software programs tend to produce an avalanche of infor-

mation when fitting a model (Crawley 2012). Identifying

important factors and translating output of a statistical model

into meaningful biological information can be a complex task,

especially if themodel contains interaction terms, in which case

intercepts and slopes change depending on the values of the

interaction terms (Quinn & Keough 2002). It is important to

be aware that corrections to intercepts and slopes are a source

of confusion for some readers and may differ with software

and software settings.

Your first task is to determine which numerical informa-

tion to present in a paper. For multiple linear regression mod-

els, provide a table with the estimated parameters, standard

errors, t-values, R2 and the estimated variance. The same can

be done with mixed-effects models; however, you must

include multiple variances. If possible, calculate an intraclass

correlation (Zuur et al. 2009), for which you will need to

determine R2 for mixed models (Nakagawa & Schielzeth

2012). Similar information can be presented for GLM and

GLMMs. For GAM and GAMMs, you must include the

effective degrees of freedom of the smoothers and indicate the

type of smoothers used (Wood 2006). The specific format of

tables and figures will depend on the guidelines of the journal

to which you are submitting your paper.

There is an ongoing debate in the literature (Halsey et al.

2015) over whether P-values should be included. Their inter-

pretation is prone to abuse, and, for most of the frequentist

techniques mentioned, P-values are approximate at best. They

must be interpreted with care, and this should be emphasized

in the paper. An alternative is to present 95% confidence inter-

vals for the regression parameters and effect size estimates and

their precision (Halsey et al. 2015).

Next, we discuss interpreting and communicating the

numerical output. Ignoring for the moment its model valida-

tion problems, the numerical output of the Poisson GLMM

applied on the owl data is given in Table 1. There are two cate-

gorical covariates, each of two levels; therefore, we have four

equations. It may help to write them out:

log ðlijÞ ¼
5�169� 0�129�ArrivalTimeij deprived and female

5�160� 0�129�ArrivalTimeij deprived and male

4�515� 0�129�ArrivalTimeij satiated and female

4�635� 0�130�ArrivalTimeij satiated and male

8>>><
>>>:

(eqn 3)

The numbers in the equations are obtained bymodifying the

intercept and the slope based on the values of the categorical

covariates food treatment and sex of parent (Quinn & Keough

2002). For example, the value 5�160 was obtained by subtract-

ing 0�009 from the intercept (Table 1). This is the correction of

the intercept for an observation of deprived treatment and

male parent. These equations can be presented in the Results

section as text or superimposed on a graph that illustrates the

modelling results (Step 9). However, the overdispersion and

nonlinear pattern in the Pearson residuals (Fig. 5) invalidate

the results in Table 1.

The MCMC output for the baboon model is presented in

eqn (2). Table 2 shows the posterior mean values, posterior

standard errors and 95% credible intervals. Provide a concep-

tual explanation of these terms. The fitted model for a large

group size is

logitðpijkÞ ¼ 0�289� 0�052� Timeijk � 0�036�
Relatednessijk þ 0�039� Timeijk �Relatednessijk

(eqn 4)

For a small group, the intercept and one slope needs correc-

tion, resulting in

logitðpijkÞ ¼ 0�021� 0�052� Timeijk þ 0�214�
Relatednessijk þ 0�039� Timeijk �Relatednessijk

(eqn 5)

Even for statisticians, interpreting this model is a brain-

teaser, and for that reason, we introduce Step 9.
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Fig. 5. Pearson residuals vs. arrival time for the Poisson GLMM

applied to the owl data. A thin plate regression spline smoother with

95% confidence intervals was added to aid visual interpretation. The

smoother was fitted using the mgcv package (Wood 2006) and explains

7%of the variation in the Pearson residuals.
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Step 9: Create a visual representation of themodel

To aid the interpretation of statistical results, create a graphic

depiction of the fittedmodel.

In the previous step, we showed that interpreting the biologi-

cal implications of the model for the baboon data is a major

challenge. Sketching the fitted values will aid in comprehen-

sion; graphs may be more effective at imparting information

than are numbers and equations. For models with multiple

covariates, graphing requires some R coding skills (Sarkar

2008; Wickham 2009). Strive to avoid ‘chartjunk’, a phrase

introduced by Tufte (1983) referring to redundant information

in a graph. See Rougier, Droettboom & Bourne (2014) for a

detailed discussion on improving graphs andGelman, Pasarica

& Dodhia (2002), who make a strong case for transforming

tables into graphs.

The Poisson GLMM model for the owl data was overdis-

persed, and the residuals contained nonlinear patterns. The

model can be improved by application of a GAMM allowing

for a nonlinear arrival time effect, fitting a zero-inflated model

or employing a model with a more complex dependency

structure. To choose the appropriate approach, plot the

model fit of the Poisson GLMM (Fig. 6). This graph,

together with the model validation graphs, can provide direc-

tion on how to proceed with the analysis. If the Poisson

GLMM were the optimal and final model, a graph such as

Fig. 6 could be included in the paper, but, in this example,

the GAMM is required.

The model for the baboon data contains an interaction

between a continuous and a categorical covariate, as well as

between two continuous covariates. Despite writing the equa-

tions for small and large groups, it is difficult to interpret the

model and to determine the contribution of each component.

Graphing the model fit will aid in comprehension. Figure 7

shows two planes, one representing the small group and for the

other representing the large group. The small group exhibited

a positive effect of relatedness on rank differences early in the

day and a negative effect later in the day, as well as a negative

time effect for low relatedness values and a positive time effect

for higher relatedness values. The large group shows a negative

relatedness effect early in the day.

Step 10: Simulate from themodel

When simulating data from the model, the simulated data should

be comparable to the original data. If not, the model needs

improvement.

After you have fitted amodel, you can simulate a large num-

ber of data sets from the model to verify that the model com-

plies with the data (Gelman et al. 2014), to obtain predictions

under specific covariate conditions for environmental manage-

ment purposes (Zuur, Hilbe & Ieno 2013) and to better recog-

nize themodelled data’s implication for real-world situations.

We simulated 10 000 data sets from the PoissonGLMM for

the owl data. For each simulated data set, we calculated the

percentage of zeros. The majority of simulated data sets con-

tained 3–4% zeros, and several had 8% (Fig. 8). The percent-

age of zeros in the observed data was 26%, indicating that the

Poisson GLMM in eqn (1) cannot cope with the relatively

large number of zeros. Similar simulation steps can be carried

out for the dispersion statistic, minimum value, maximum

value, etc. You can also calculate a frequency table for each

simulated data set and use these to create an average frequency

table to compare with the frequency table of the observed data.

Table 1. Estimated regression parameters, standard errors, z-values andP-values for the PoissonGLMMpresented in eqn (1). The estimated value

forrNest is 0�484.

Estimate Std. error z value P-value

Intercept 5�169 0�292 17�665 <0�05
FoodTreatmentSatiated �0�654 0�468 �1�395 0�162
ArrivalTime �0�129 0�011 �11�472 <0�05
SexParentMale �0�009 0�045 �0�208 0�834
FoodTreatmentSatiated : SexParentMale 0�129 0�070 1�842 0�065
FoodTreatmentSatiated : ArrivalTime �0�000 0�019 �0�026 0�979

Table 2. Posteriormean values, standard errors and 95%credible intervals for the parameters in the betamodel presented in eqn (2).

Mean Std. error 2�5% 97�5%

Intercept 0�289 0�138 0�014 0�560
Time.std �0�052 0�023 �0�098 �0�007
Relatedness.std �0�036 0�040 �0�115 0�042
GroupSizesmall �0�267 0�213 �0�685 0�157
Time.std : Relatedness.std 0�039 0�021 �0�002 0�081
Relatedness.std : GroupSizesmall 0�250 0�053 0�147 0�354
sigma.gr 0�554 0�069 0�433 0�704
sigma.fh 0�328 0�043 0�238 0�408
sigma.rc 0�538 0�061 0�431 0�671
theta 13�289 0�877 11�630 15�069
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This should indicate whether the model complies with the

data.

Instead of simulating data from themodel, you can use 90%

of the data for fitting the model and the remaining 10% to

assess how well the model performs for prediction. This is

called cross-validation, and a wide range of procedures for its

execution is available. Harrel (2001) discusses various options

for cross-validation as part of the model validation process. In

MCMC literature, simulating data from a model is well

described; see Lawson (2013) orGelman et al. (2014).
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Fig. 6. Fit of the Poisson GLMM in eqn (1)

for the owl data.
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It is also possible to use simulation techniques to investigate

‘what if’ scenarios. Zuur, Hilbe & Ieno (2013) analysed zero-

inflated and spatially correlated common scoter Melanitta

nigra data. The purpose of the research was to investigate

whether measures taken to compensate for the loss of sea habi-

tat resulting from the creation of a large port extension in Rot-

terdam were effective in safeguarding populations of common

scoters in the south-west coastal zone of the Netherlands. One

such measure was to create sanctuary zones free of distur-

bance, primarily caused by sea vessels, along the studied

coastal area. Different scenarios of vessel disturbance were fed

into the fitted model. Results of such simulations provide

guidelines for policy-makers and will be the core of published

results.

Simulation of data should be part of the model validation

process. In a paper, mention the results in one or two lines.

Discussion

Ecology is a developing scientific field that creates increasingly

complex data sets obtained through expanding sampling tech-

niques, the analysis of which requires sophisticated statistical

approaches. Whereas 20 years ago one could use descriptive

techniques, such as non-metric multidimensional scaling, to

present information, methods providing more complete and

usable information are currently available, but may be chal-

lenging to employ. We have presented a common sense proto-

col that comprises a series of essential steps in analysing data

and presenting results in written form, to facilitate clarity in

communication of results.

The idea of using a step-by-step approach when reporting

the results of a statistical analysis is not new; see for example

Fukuda & Ohashi (1997) and references therein. A wide array

of information and recommendations for presenting the

numerical output of statistical models is available online. A

scientific paper reflects a process that proceeds from formulat-

ing basic questions, sampling and analysing data, to visualiz-

ing results and drawing conclusions. The 10-step protocol

presented here can be used as a guide for data analysis and

for presenting the statistical aspects of a study. More general

information how to write a paper, design tables, use appro-

priate font sizes for legends and labels, references, titles,

abstract content, etc., can be found in, for example, Gustavii

(2003).

When presenting the data in the Results section, limit the

amount of non-essential information. A barrage of facts such

as the mean, median, standard deviation and other summary

statistics of the response variable and covariates is often diffi-

cult to interpret, as well as superfluous when the results ofmore

sophisticated techniques to estimatemean values and covariate

effects are presented.

Finally, take care to ensure that the biological conclu-

sions are consistent with the results of the statistical anal-

yses. Use appropriate citations. Make the raw data and R

code used freely available via websites like DRYAD

(http://www.datadryad.org/). This allows other researchers

to verify, replicate, reuse and extend your analyses.
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