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Amphibians are frequently characterized as having limited dispersal abilities, strong site
fidelity and spatially disjunct breeding habitat. As such, pond-breeding species are
often alleged to form metapopulations. Amphibian species worldwide appear to be
suffering population level declines caused, at least in part, by the degradation and
fragmentation of habitat and the intervening areas between habitat patches. If the
simplification of amphibians occupying metapopulations is accurate, then a regionally
based conservation strategy, informed by metapopulation theory, is a powerful tool to
estimate the isolation and extinction risk of ponds or populations. However, to date no
attempt to assess the class-wide generalization of amphibian populations as
metapopulations has been made. We reviewed the literature on amphibians as
metapopulations (53 journal articles or theses) and amphibian dispersal (166 journal
articles or theses for 53 anuran species and 37 salamander species) to evaluate whether
the conditions for metapopulation structure had been tested, whether pond isolation
was based only on the assumption of limited dispersal, and whether amphibian
dispersal was uniformly limited. We found that in the majority of cases (74%) the
assumptions of the metapopulation paradigm were not tested. Breeding patch isolation
via limited dispersal and/or strong site fidelity was the most frequently implicated or
tested metapopulation condition, however we found strong evidence that amphibian
dispersal is not as uniformly limited as is often thought. The frequency distribution of
maximum movements for anurans and salamanders was well described by an inverse
power law. This relationship predicts that distances beneath 11�/13 and 8�/9 km,
respectively, are in a range that they may receive one emigrating individual. Populations
isolated by distances approaching this range are perhaps more likely to exhibit
metapopulation structure than less isolated populations. Those studies that covered
larger areas also tended to report longer maximum movement distances �/ a pattern
with implications for the design of mark-recapture studies. Caution should be exercised
in the application of the metapopulation approach to amphibian population conserv-
ation. Some amphibian populations are structured as metapopulations �/ but not all.
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The importance of the spatial element in ecology has

long been recognized (Andrewartha and Birch 1954), but

its consideration has undergone a period of distinct

growth in the past thirty years (Hanski 1999) with

increased emphasis paid to concepts such as the

spatial nature of population dynamics and the spatial
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partitioning of populations’ genetic variability. The

metapopulation approach, first outlined by Levins

(1969, 1970), has been especially insightful for the

development of spatial ecology and its application to

conservation. In simple terms, a metapopulation is a

collection of partially isolated breeding habitat patches,

connected by occasionally dispersing individuals

whereby each patch exists with a substantial extinction

probability. Thus, long-term persistence occurs only at

the regional level of the metapopulation. There are

currently many variants of the metapopulation concept

ranging from very simple models utilizing a minimum of

data (Levins 1969) to much more complex models which

incorporate many environmental variables (Sjögren

Gulve and Ray 1996, Harrison and Taylor 1997, Hanski

1999). The most useful function of this continuum of

metapopulation theory has been to integrate spatially

structured interactions between local populations with

processes occurring within populations and thereby

enable better assessment of population viability.

Models more realistic than the initial Levins approach

consider the effects of patch area, shape and isolation,

and the effect of the non-habitat between patches on the

likelihood of patch extinction or colonization (Hanski

1999). This addition of realism has been accompanied by

an exponential increase in the number of biological

systems examined for metapopulation structure (Hanski

1999). However, rapidly increasing empirical use of

metapopulation concepts, without clear tests of the

theory’s applicability, may reduce the precision with

which the term metapopulation is used (Freckleton and

Watkinson 2003, Pannell and Obbard 2003). For in-

stance, conservation strategies may be misdirected if

similar species are considered a priori to exhibit similar

population structure and dynamics in the absence of

evidence to the contrary or if departures from simple

metapopulation models are not clearly detailed (Hanski

and Simberloff 1997). It has been stated that because

metapopulation dynamics are concerned mostly with the

presence or absence of species in local populations, the

sampling of any specific local populations would not

need to be as intense (Alford and Richards 1999).

Clearly this will be a decision with dire consequences if

there is no true metapopulation structure at all. Such a

conclusion is only valid for a simple metapopulation and

therefore it would also be a mistake if a more extended,

complex metapopulation was actually modeled (Harri-

son and Taylor 1997). Therefore, the issue of whether or

not populations of amphibians, or any taxa, form a

metapopulation is not merely semantic but is relevant to

their conservation and management.

Certainly, where disjunct breeding patches contain

individual populations that exist in a shifting balance

between extinctions and recolonisations via dispersing

individuals the metapopulation approach is an attractive

theoretical construct (Hanski 1999). Many temperate

amphibians do use spatially disjunct breeding habitat

(Duellman and Trueb 1986), and are often regarded as

poor-dispersers with high site fidelity (Duellman and

Trueb 1986, Sinsch 1990, Blaustein et al. 1994, Beebee

1996, Berry 2001). In light of these observations, it

appears highly probable that amphibian populations

likely do operate as metapopulations (Harrison 1991,

Alford and Richards 1999, Marsh and Trenham 2001).

‘‘. . .Our review of the literature suggests that many if not

most amphibians exist in metapopulations’’ (Alford and

Richards 1999). Yet the assumptions of limited dispersal,

high site fidelity and evident metapopulation structure in

amphibians have not been stringently tested, and we do

so here.

We examined the literature for all references to

amphibians as metapopulations using Current Contents,

Scientific Citation Index, and other published reference

lists. We tested whether the published literature for

amphibians had addressed the four conditions deemed

necessary for the existence of simple metapopulation

structure (Hanski et al. 1995, Hanski 1999), and whether

amphibians are indeed of low vagility and high site

loyalty. Although the metapopulation concept has

been extended to include population structures not

described by these conditions (Harrison and Taylor

1997, Hanski 1999), our analysis is restricted to these

simple conditions for the single reason that simple,

stochastic metapopulations are likely good models for

real populations living in highly fragmented landscapes

(Ovaskainen and Hanski 2004) �/ a situation which

includes many temperate, pond-breeding amphibians

(Marsh and Trenham 2001). If populations inhabiting

habitat patches are best described by simple metapopu-

lation models that are described by Hanski’s four

conditions, then the collection of empirical data, ad-

vantageous to conservation and management, is rela-

tively simple. Thus, to review the applicability of the four

conditions of a simple metapopulation to amphibian

ecology is timely and necessary.

Our secondary focus is upon Hanski’s 3rd condition

of limited dispersal ability. Previous reviews of amphi-

bians and the metapopulation concept (Alford and

Richards 1999, Marsh and Trenham 2001) focused

primarily on the Hanski’s 1st condition �/ that breeding

ponds constitute separate and individual breeding

populations. While both reviews identified the impor-

tance of dispersal for determining the range of recolo-

nisation �/ a comprehensive review of dispersal abilities

in relation to the metapopulation concept was not

completed and our review is therefore complimentary.

It is also timely, for most metapopulation models assume

that metapopulation dynamics are dominated by short

distance movements (Hanski 1999, Baguette 2003), and

if we underestimate the likelihood of long distance

dispersal we risk either incorrectly estimating the scale

of a metapopulation effect, or incorrectly attributing
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metapopulation structure to a system where local

dynamics are more important than regional (i.e. not a

metapopulation). Thus, correctly estimating long-dis-

tance dispersal lies at the heart of determining the

appropriate scale of a metapopulation approach.

We compiled a comprehensive list of the longest

distances moved by amphibians in both mark-recapture

and displacement studies (Tables 3 and 4). To test

whether the low-vagility hypothesis was caused by a

lack of long-distance dispersal data in amphibians

caused by small study areas we subsequently compared

these movement distances to the maximum distance

covered by the field site. If not recorded directly by the

author, the maximum observable distance was most

frequently entered as the diagonal of the figure doc-

umenting the study site �/ likely a liberal interpretation

of maximum distance measurable.

The title of our review was inspired by that of

Freckleton and Watkinson (2003) who have asked a

similar question of the utility of the metapopulation

concept to plant ecology.

Amphibians and Hanski’s four metapopulation
conditions

Hanski outlines four conditions necessary to demon-

strate the existence of a metapopulation effect (Hanski

and Kuussaari 1995, Hanski et al. 1995, Hanski 1999): 1)

habitat patches support local breeding populations, 2)

no single population is large enough to ensure long-term

survival, 3) patches are not too isolated to prevent

recolonisation, and 4) local dynamics are sufficiently

asynchronous to make simultaneous extinction of all

local populations unlikely. Someone who observes a

species with high site-fidelity, limited dispersal and

apparently disjunct breeding patches, may frequently

and implicitly, evaluate (or accept) these assumptions a

priori. Through an examination of studies in the

literature involving amphibians where the term metapo-

pulation or population subdivision was used, we exam-

ined whether these studies had tested, not tested or

assumed the importance of each of these conditions

(Appendix 1). In some cases, it was unclear whether a

study had ‘‘not tested’’ a Hanski Condition or whether it

had been ‘‘assumed’’ to be accurate. Examples of two

common differences occurred where a study involved a

genetic analysis of metapopulation structure, (Rowe et

al. 2000), or where a study was dependant on the

assumption of limited dispersal. In the first scenario of

a genetic metapopulation Condition 1 (that habitat

patches support local breeding populations) is mathe-

matically necessary to support the existence of a

metapopulation, and was therefore considered as as-

sumed, rather than not tested. In the second scenario of

limited dispersal, Condition 3 (limited dispersal with the

potential for recolonisation), was coded as assumed if

there was an implication in the manuscript text that

dispersal beyond a certain distance was expected to be

impossible (Conroy and Brook 2003, Woodford and

Meyer 2003).

Clearly there are a wide range of population condi-

tions that have been called, ‘‘metapopulations’’ (Harri-

son and Taylor 1997), and we never suggest that the

simple, stochastic type of metapopulation described by

Hanski’s four conditions is the only type of metapopula-

tion that exists. Rather, our goal was to investigate the

frequency with which these simple models were actually

tested by using a diverse taxa for which it has been

suggested that the simple metapopulation was likely the

predominant population condition (Harrison 1991,

Alford and Richards 1999). Additionally, it was our

hope to focus attention on the increasingly extended

definition of the term metapopulation. We agree with

Pannell and Obbard (2003) that the term, metapopula-

tion should not be extended to include every instance

where a species inhabits discrete habitat patches that

may or may not be involved in population structure. If

the term is extended until it includes practically all

situations then it’s utility is compromised as it is no

longer falsifiable.

In our review we examined all instances where

metapopulation was used in the title, abstract or key-

words of journal articles or theses that studied amphi-

bians. We included those articles that did not explicitly

test a Hanski style metapopulation �/ because this

manner of untested, a priori, defining of metapopula-

tions is part of the trend we examine, and wish to draw

attention to. In the instance where authors relied on

previously published material we considered that condi-

tion to have been tested.

The majority (73.6%) of the possible 212 Hanski

metapopulation conditions (53 articles�/ four condi-

tions) were assumed or untested in the amphibian as

metapopulation literature (Table 1). The most frequently

tested condition was of isolation, although the dispersal

ability of the amphibian species was rarely tested directly.

Even though dispersal was indirectly estimated with

genetics in 45% of the cases, the a priori assumption was

that the amphibian was of low vagility. Any distance

larger than one kilometre (Berven and Grudzien 1990,

Sjögren 1991, Waldick 1997, Vos and Chardon 1998,

Newman and Squire 2001, Conroy and Brook 2003), two

kilometres (Hranitz and Diehl 2000), or several hundred

meters (Reading et al. 1991, Skelly, et al. 1999) were

referred to as critical distances beyond which amphibian

dispersal would not penetrate. In fact, of the 53-

amphibian/metapopulation studies, all explicitly tested

or assumed that ponds were isolated due to the limited

dispersal and/or high site fidelity of amphibians. 42 of 53

studies (79%) implicated this limited dispersal as the, or

one of the, primary rationales behind the utility of the
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metapopulation process. Interestingly, studies that re-

jected the metapopulation paradigm (10/53) did so

because there was judged to be too much dispersal

among patches.

Amphibian site loyalty and movement

The literature contains many references that explain the

poor dispersal ability of amphibians as being a con-

sequence of their physiology and behavior (Duellman

and Trueb 1986, Sinsch 1990, Blaustein et al. 1994).

Amphibian skin is highly permeable and amphibians

therefore have a stringent dependence on moisture

(Duellman and Trueb 1986). Additionally, amphibians

can show extreme site loyalty (Blaustein et al. 1994).

Many individual studies have demonstrated that amphi-

bians are found at the same location between census

years and, where individuals have been followed through

time, their movement is limited (Sinsch 1990) (Table 2).

Nevertheless, in our review we found that while the

view of limited amphibian dispersal may be true for

some species, it clearly does not hold for all. Among 166

journal articles concerning 90 species recording the

maximum distance moved, while 44% of the amphibian

species moved no farther than 400 m (Tables 3 and 4),

5% were capable of movements greater than 10 km

(Table 5). This literature review sampled much more of

total salamander diversity (37 species of 352 worldwide,

10.5%) than anuran diversity (53 species of 3848 world-

wide, 1.5%) (Duellman and Trueb 1986), and there were

evident differences between these groups. Nearly one

half (44%) of the anuran species displayed maximum

dispersal distances greater than one kilometre, and 7% of

frogs were observed to have maximum dispersal dis-

tances greater than 10 km (Table 4). This is surprising

considering that one kilometre has appeared indepen-

dently in the literature as a magic number beyond which

amphibian populations would be isolated from dispersal

events (Berven and Grudzien 1990, Sjögren 1991,

Waldick 1997, Vos and Chardon 1998, Newman and

Squire 2001, Conroy and Brook 2003); and 15 km has

been defined as the maximum migratory range (Sinsch

1990). Amphibian species truly do appear to be site-loyal

on average, yet the frequency histogram of maximum

distances moved is better fit by a power law than an

exponential distribution (power (log-log) R2 �/ 0.67,

exponential (log-normal) R2 �/ 0.25) (Figs 1�/3). In the

power relationship, a proportion of the individuals are

not described by that average and move long distances.

This proportion is larger in the power relationship than

in one described by an exponential function. If these

long-distance-dispersers were frequent it would reduce

the likelihood of support for the paradigm of metapo-

pulation structure through isolation. Such a high rate of

dispersal would effectively unite disjunct populations

into a single unit �/ or patchy population ((Harrison

1991, Harrison and Taylor 1997) and not as Freckleton

and Watkinson (2003)). If any metapopulation structure

were to exist in this case, it would more likely be at a

larger spatial scale than predicted by an exponentially

distributed frequency distribution. Thus, it is incorrect to

infer isolation from observed philopatry.

Although 94% of the maximum dispersal distances for

salamanders are less than 1 km (Table 3), the frequency

distribution of distances was also an inverse power

function (Fig. 2). Therefore, although most may not

move very far, there is a strong likelihood that some

individuals may complete long-distance movements. For

example, Plethodon glutinosus is a remarkably site loyal

animal across ages and sexes (Wells and Wells 1976).

Using data provided in the paper for this species, we

found that an inverse power law explained 74% of the

variation in movement frequency for males (from Wells

and Wells (1976) Fig. 1). In this case, although it is clear

that most individuals are unlikely to move �/10 m,

according to this relationship there is an appreciable

chance (�/0.4%) that an individual could move one

kilometre. Indeed, recent findings document that for

some pond-breeding salamanders, rates of inter-pond

migration are high enough to suggest that the fit of the

metapopulation paradigm to this particular species was

less than was expected (Trenham 1998).

Clearly, most amphibian species do not move very

far, but surprisingly, greater than 7% of anurans we

surveyed were capable of movements of greater than

10 km. This leptokurtic, inverse-power relationship

neither supports nor rejects the model of the poorly

Table 1. Literature review of the metapopulation paradigm in amphibian ecology. Fifty-three studies regarding amphibians and
population sub-division were examined regarding their explicit or implicit testing of the four conditions necessary for a
metapopulation effect (Hanski et al. 1995).

Habitat patches support
local breeding population

No single population is
large enough to ensure

long-term survival

Patches are not too isolated
to prevent recolonisation:
isolation due to limited

dispersal

Local dynamics are
sufficiently asynchronous

to make simultaneous
extinction of all local
population unlikely

Not tested 20 37 0 45
Tested 11 10 32 3
Assumed 22 6 21 5
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dispersing amphibian. Concluding all amphibians are

poor dispersers is as incorrect as stating that all

mammals move long distances. Rather, the power

relationship demonstrates that, as a group, amphibians

exhibit a wide range of dispersal strategies. As has been

demonstrated (Stumpel and Hanekamp 1986, Platx et al.

1990, Tunner 1992, Vos et al. 2000, Hayes et al. 2001,

Smith 2003), some amphibian species are capable of

movements that are surprising for presumably poorly

dispersing animals. Our review suggests that anurans

have an average maximum movement recorded (2.02 km)

that is two times as large as the distance commonly

reported as wide enough to result in population isola-

tion. The diversity of maximum movement recorded is

apparent in the wide variance (2.40 E �/07). Indeed, the

anuran average and variance are an order of magnitude

larger than the same patterns in salamanders (Table 5).

Fitting an inverse power law to the movement frequency

patterns for anurans and salamanders results in the

explanation of 70% and 55% of the variance. Specific

expectations for an individual species should not be

based on a pattern demonstrated using many species and

independent studies. However, note that our analysis

makes a general prediction regarding the spatial scale at

which one should expect local population differentia-

tion: that distance where the inverse power law predicts a

number of migrants equal to one. Genetically, popula-

tions tend to be locally differentiated when Nem �/1

(Kimura and Maruyama 1971). For salamanders, the

inverse power law predicts that at least one individual is

likely to move distancesB/8�/9 km and for anurans at

least one individual is likely to move 11�/13 km. When

pond networks are separated by these approximate

distances �/ where dispersal is possible, but not common

�/ is more likely to be a scale where the simple, stochastic

metapopulation approach is applicable for amphibians.

Such a rule will obviously not hold for all species all of

the time (the environment between habitat patches, the

species, the condition of individuals will all affect

dispersal abilities and will differ), but our generalization

is a hypothesis informed by the literature that invites

further testing.

Others have noted that the perception of limited

amphibian dispersal may reflect the scale at which

amphibian-researchers operate, rather than the scale at

which amphibians disperse (Turner 1960, Dole 1971,

Staub et al. 1995, Marsh et al. 1999, Pope et al. 2000).

Among those studies where there was enough data

reported to estimate the longest axis of the study area,

that distance was therefore the longest possible distance

that could have been recorded. A regression of maximum

distance dispersed on the size of the studies long axis

resulted in a significant positive relationship where

72.65% of the observed variance in maximum dispersal

distance is explained by having a larger study site

(Fig. 4). This relationship suggests that our under-

standing of the maximum distances amphibians can

move is being underestimated by the site size where we

Table 2. Examples of site fidelity in amphibians.

Species Fidelity Source

Triturus vulgaris Not a single one of 2500 marked individuals changed breeding ponds
between seasons.

Bell 1977

Plethodon cinerus Philopatric to the same cover object between years. Placyk and Graves 2001
Triturus vulgaris Philopatric to the same cover object between years. Dolmen 1981
Bufo bufo 93% of females and 96% of males that survived between years, returned to

the same breeding ponds.
Reading et al. 1991

Bufo marinus No significant homing effect. Seebacher and Alford 1999
Bufo marinus Return to their home site with 100% accuracy when displaced up to 70 m,

or 165 m.
Brattstrom 1962, Carpenter
and Gillingham 1987

Bufo americanus Returned to within 5 m of their original site after a 235 m translocation. Dole 1972
Pseudacris triseriata
triseriata

The majority of recaptures were within 100 m of the initial capture site. Kramer 1973

Pseudacris maculata The maximum distance moved is only 250 m. Spencer 1964
Hyla regilla 71% of males were found in the same portion of the same pond when

recaptured the following year.
Jameson 1957

Mixophyes iteratus 89% of individuals were recaptured 5 m or less away from where they were
marked.

Lemckert and Brassil 2000

Rana sylvatica 100% of adults and 82% of juvenile are faithful to their first breeding
pond or natal pond respectively.

Berven and Grudzien 1990

Rana sylvatica The mean distance between captures was only 11.25 m for 298
individuals.

Bellis 1965

Rana pipiens 98% of returned to their home pond after a one-kilometer displacement. Dole 1968
Rana muscosa 89% percent of were recaptured at the same pond between breeding

seasons.
Pope and Matthews 2001

Rana muscosa 50% of translocated individuals returned to their initial site within 20
days after a 630 m translocation.

Matthews 2003

Rana lessonae and
Rana ridibunda

88% of individuals monitored between years did not move from their
capture pond.

Holenweg Peter 2001

Rana aurora draytonii 75% did not move from their site over the course of a year and 90% of
these philopatric individuals were never more than 60 m from the water.

Bulger et al. 2003
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study such movement. Our review makes a simple

prediction that monitoring larger areas in the future

will result in the discovery of longer distance movements

for both anurans and salamanders.

Case study

Some amphibians do function as metapopulations (Gill

1978, Sjögren 1991, Sjögren Gulve and Ray 1996, Vos

et al. 2000). However, examining the amphibian-as-

metapopulation literature indicates that the generaliza-

tion that all amphibians will operate as metapopulations

(Alford and Richards 1999) is not supported. The

majority of the metapopulation conditions are either

not tested or are assumed to hold in the amphibian as

metapopulation literature. Instead, it is often taken as a

foregone conclusion that amphibians operate as meta-

populations. Bulger et al. (2003), for example, invoke

metapopulation structure without having tested any of

the related (Hanski and Kuussaari 1995, Hanski et al.

1995, Hanski 1999) hypotheses. For species we have

examined ourselves (Bufo americanus, Bufo fowleri,

Pseudacris crucifer, Rana sylvatica, Rana pipiens, Rana

clamitans and Rana catesbeiana ), both locally (on a

scale of5/10 km) and regionally (for B. fowleri 5/300

km), we found no evidence of metapopulation structure

at either scale, and concluded that while there was not

enough movement between populations separated by

many tens of kilometres to support a metapopulation

effect, there was likely too much dispersal occurring

between the habitat patches separated by 10 km or less

(Smith 2003). Most of these species are common to the

area we investigated, but B. fowleri is currently listed as

Threatened by the Committee on the Status of Endan-

gered Species (COSEWIC) in Canada largely due to its

isolated and fragmented habitat. Indeed, a metapopula-

tion based conservation approach was intuitively appeal-

ing for this species, as, prior to our analysis, it

qualitatively appeared to meet all of Hanski’s four

conditions.

To reconcile the acceptance of the metapopulation

approach in amphibian conservation and ecology with

the lack of stringent testing of hypotheses we compared

those characteristics common to amphibians as meta-

populations (Marsh and Trenham 2001), 1) population

dynamics determined by pond-based-processes, 2) com-

mon local extinction and colonisation, 3) local extinction

occurring in suitable habitat, 4) limited dispersal causing

isolation) to the studies we have reviewed and the species

for which we have data.

The majority (33/53) of the studies we examined had

either implicitly assumed, or had tested, that the ‘‘ponds

as patches’’ view was an accurate depiction of an

amphibian population. Recently, Skelly and Meir

(1997), Pope et al. (2000) and Marsh and TrenhamT
ab
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(2001) have criticized the assumed primacy of the pond.

For instance, with Rana pipiens, any apparent metapo-

pulation structure was removed when the non-pond

variable of ‘‘summer habitat’’ was removed from the

analysis (Pope et al. 2000). In our own work with

B. fowleri , we know that the number of non-reproductive

one year olds at year (t) explains nearly 80% of the

variation in captured adults in year (t�/1) (Green and

Smith unpubl.). Although strong, this relationship was

derived using only 5 yr worth of data and excludes one

year where it was suspected that migration boosted the

observed number of reproductive animals in year (t�/1).

Thus while population processes occurring in the pond

are clearly important, there is strong evidence that events

occurring outside the pond (migration, over-wintering

success) also contribute the observed population dy-

namics. Therefore, instead of asking is the pond a patch

(�/Hanski Condition 1), we should ask is the patch only

the pond? Stated another way; perhaps the easily

spatially delineated feature ‘‘pond’’ is not the disjunct

habitat one should model. The application to amphibian

conservation is clear, for if one adopted a metapopula-

tion based conservation approach on the hypothesis of

ponds as metapopulation patches �/ and summarily

protected those patches �/ without testing whether the

habitat critical to the species survival was actually

described by pond boundaries it is possible that the

truly important habitat would not be protected.

Forty-five out of 53 articles in the literature (85%) did

not examine the frequency of local extinction and

colonization. A limited number of between-year occu-

pancy transitions severely restrict the researcher’s ability

to determine whether extinctions and colonizations are

actually common features of the network of breeding

assemblages (Thomas et al. 2002). For instance, within

the local habitat patch assemblage we monitor in

Ontario, there have been 38 observed colonisation and

31 extinction events for B. fowleri measured over 15 yr

at Long Point, resulting in average colonisation and

extinction rates of 0.2798 and 0.2481 respectively.

Compared to values for other amphibian species

(Table 2 of Marsh and Trenham (2001)), the values for

B. fowleri are amongst the highest and yet there is no

evident metapopulation effect involved in B. fowleri

population dynamics (Smith 2003). Due to relatively

high rates of local extinction and colonisation in B.

fowleri , a conservation strategy might be based on the

faulty notion that these toads occupy local and regional

metapopulations when they are actually more intimately

connected by regular dispersal (i.e. a patchy population).

One finding recorded regularly in the literature was

that local amphibian extinctions were deterministic, not

stochastic, as habitats underwent succession (Sjögren

1991, Skelly et al. 1999, Marsh and Trenham 2001,

Bradford et al. 2003). Indeed, at Long Point the

environment is constantly undergoing succession, and

Table 5. Summary table for the analysis of maximum reported distance moved for 164 studies of 90 species of amphibians.

Amphibians Frogs Salamanders

Number of species in dispersal studies 90 53 37
Number of dispersal studies 166 102 64
% max dispersal5/1 km 70 56 94
% max dispersal5/400 m 44 31 64
% max dispersal]/10 km 5 7 2
Average (m) 2023.54 2922.51 576.75
Standard deviation (m) 4895.61 5929.89 1664.92
Variance (m2) 2.40E�/07 3.52E�/07 2.77E�/06

Fig. 1. Frequency histogram of the
maximum distance moved by
amphibians from 166 journal articles
(90 species). 200 m size bins. 30% of
the reviewed studies had maximum
movement distances �/1 km. y�/

22.39x�0.7653, R2�/0.7031.
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ponds are likely to be exposed to deterministic degrada-

tion (as B. fowleri breeding habitat) as they go through

succession. We suspected that at least several of the

observed extinctions at Long Point were due to succes-

sion reducing habitat quality to such an extent as to

cause extinction. Perhaps the effects of this deterministic

change are predominant over any stochastic changes we

have measured (Skelly et al. 1999), but a quantitative

analysis of this question is beyond the scope of this

investigation. Clearly though it remains important to do

so (Ellner and Fussmann 2003), as differentiating

between the importance of stochastic and deterministic

changes will inform conservation decisions regarding

whether management should focus on landscape factors

or local habitat conditions.

The supposition of limited dispersal causing isolation

was the most frequently implicated reason for evident, or

assumed, metapopulation structure in amphibians. In

our own work with B. fowleri , we concluded that

dispersal was likely the primary factor implicated in

the lack of metapopulation structure we demonstrated �/

both too little and too frequent (Smith 2003). At a local

scale of 5/10 km, individuals dispersed over a distance

and at a rate that made even isolated populations

connected to the whole. Regionally (5/300 km), popula-

tions were too isolated for even occasional migrants to

recolonise habitat following local extinction. We suspect

that the generalization of limited amphibian dispersal

causing population isolation, and therefore metapopula-

tion structure, may not be warranted as frequently as the

literature implies (Alford and Richards 1999). This is

especially true for pond-breeding anurans species with a

high turnover of local populations and dependent upon

dispersal for its persistence, for without the effect of

rescue from neighboring populations, they will suffer

greater cumulative local extinctions (Green 2003). We

Fig. 3. Frequency histogram of the
maximum distance moved by anurans from
102 journal articles (53 species). 200 m size
bins. Forty-four percent of the reviewed
studies had maximum movement distances
�/1 km. y�/13.749x�0.6396, R2�/0. 6797.
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Fig. 2. Frequency histogram of the
maximum distance moved by
salamander species from 62 journal
articles (37 species). 200 m size bins. Six
percent of the reviewed studies had
maximum movement distances �/1 km.
y�/6.23x�0.4823, R2�/0.544.
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find that movement distances for anurans are an order of

magnitude greater (�/10 km) than has previously been

thought.

Conclusions

Our review demonstrates that the applicability of the

metapopulation paradigm to amphibian species is lar-

gely dependant on the hypothesis of limited dispersal. As

there are a wide range of dispersal abilities within

amphibian species, we should be cautious with the

indiscriminant application of the metapopulation ap-

proach to amphibians �/ especially where conservation

decisions are to be based on the assumptions of isolation

and metapopulation structure though limited dispersal.

Although amphibians are predominantly site-loyal and

of low vagility, they can move distances much greater

than previously anticipated. Their dispersal capabilities

suggest that occasional migrants may connect popula-

tions separated by tens of kilometers. Although it is clear

that type and quality of the landscape occurring between

habitat patches will affect the number of successful

immigrants (Ray et al. 2002); we make the general

suggestion that for salamanders and anurans, population

differentiation is most likely to occur at scales upward of

10 km. If somewhat regular movement of individuals can

connect populations separated by distances smaller than

this, then the effective number of populations is reduced.

If reduced to one, then simple patch occupancy models

are ineffective tools for research or conservation as they

ignore local dynamics (Hanski 1998). All amphibians are

not metapopulations and not all amphibians are dis-

persal poor. The paradigm of pond-breeding amphibian

populations as metapopulations has been adopted

before there have been sufficient data available to

evaluate it (Hanski and Simberloff 1997). If the meaning

of the term ‘‘metapopulation’’ has lost clarity (Smedbol

et al. 2002), researchers would do well to test the

elementary predictions of a simple metapopulation prior

to announcing that their particular study organism/

population constitutes one. If a researcher were encour-

aged to use the term metapopulation without even

simple tests of whether necessary conditions were met,

then the metapopulation would no longer be a falsifiable

hypothesis. We feel that the metapopulation concept has

much greater utility, and scientific integrity, when it is

phrased as a hypothesis.

It is not our intent to summarily reject the positive

influence the development of the metapopulation con-

cept has had on ecology and conservation. Undoubtedly

there are amphibian species for which the metapopula-

tion assumption of pond isolation due to limited

dispersal is valid. However, the generality of this

assumption is not supported by data. The metapopula-

tion approach �/ especially regarding habitat patch

isolation due to limited dispersal �/ must be more

stringently tested and more clearly reported.
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Appendix 1. Testing of metapopulation conditions. 0�/not tested, 1�/tested, and 2�/assumed.

Condition 1: habitat
patches support
local breeding
populations

Condition 2: no single
population is large
enough to ensure
long-term survival

Condition 3: patches are
not too isolated to
prevent recolonisation
(i.e. limited dispersal
allows isolation with
potential recolonisation)

Condition 4: local
dynamics are
sufficiently asynchronous
to make simultaneous
extinction of all local
populations unlikely

Source

2 2 2 2 Alford and Richards 1999
1 1 1 0 Berven and Grudzien 1990
2 1 2 0 Blaustein et al. 1994
2 1 1 0 Bradford et al. 2003
2 0 1 0 Call 1997
2 0 2 0 Carlson and Edenhamn 2000
2 2 2 0 Corser 2001
0 0 1 0 Driscoll 1997
1 0 1 0 Gill 1978
2 0 2 0 Goldber 2002
2 0 2 0 Halley et al. 1996
1 1 2 0 Hartwell 1990
2 0 2 0 Hecnar and M’Closkey 1996
0 0 1 0 Hels 2002
2 0 2 0 Hranitz and Diehl 2000
0 0 1 0 Johnson and Semlitsch 2003
2 0 1 0 Knapp et al. 2003
2 2 2 2 Laan and Verboom 1990
0 2 1 0 Marsh et al. 1999
0 0 2 0 Marsh and Trenham 2001
2 0 1 0 Monsen 2002
0 0 1 0 Muths et al. 2003
2 2 1 2 Newman and Squire 2001
0 0 1 0 Osborne and Norman 1991
1 0 2 0 Perret et al. 2003
0 0 2 0 Pope et al. 2000
0 0 1 0 Reading et al. 1991
2 2 1 2 Reh and Seitz 1990
2 0 1 0 Ritland et al. 2000
0 0 2 0 Routman 1993
2 0 1 2 Rowe et al. 2000
0 0 1 0 Scribner et al. 1994
0 0 1 0 Scribner et al. 2001
0 0 2 0 Semlitsch and Bodie 1998
0 0 2 0 Semlitsch et al. 1996
2 0 1 0 Seppa and Laurila 1999
0 0 1 0 Shaffer et al. 2000
0 0 1 0 Sinsch 1992
1 1 1 0 Sjögren 1991
1 1 1 0 Sjögren Gulve 1994
0 0 1 1 Skelly and Meir 1997
2 0 1 0 Skelly et al. 1999
0 0 1 0 Tallmon et al. 2000
1 1 1 1 Ter Braak and Etienne 2003
1 1 1 0 Trenham 1998
2 0 1 0 Vos et al. 2001
2 0 1 0 Vos and Chardon 1998
1 1 1 1 Vos et al. 2000
0 0 2 0 Woodford and Meyer 2003
2 0 2 0 Conroy and Brook 2003
0 0 2 0 Ebisuno and Gentilli 2002
1 0 2 0 Joly et al. 2001
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