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references should be cited. A summary is required.
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Amphibians are frequently characterized as having limited dispersal abilities, strong site
fidelity and spatially disjunct breeding habitat. As such, pond-breeding species are
often alleged to form metapopulations. Amphibian species worldwide appear to be
suffering population level declines caused, at least in part, by the degradation and
fragmentation of habitat and the intervening areas between habitat patches. If the
simplification of amphibians occupying metapopulations is accurate, then a regionally
based conservation strategy, informed by metapopulation theory, is a powerful tool to
estimate the isolation and extinction risk of ponds or populations. However, to date no
attempt to assess the class-wide generalization of amphibian populations as
metapopulations has been made. We reviewed the literature on amphibians as
metapopulations (53 journal articles or theses) and amphibian dispersal (166 journal
articles or theses for 53 anuran species and 37 salamander species) to evaluate whether
the conditions for metapopulation structure had been tested, whether pond isolation
was based only on the assumption of limited dispersal, and whether amphibian
dispersal was uniformly limited. We found that in the majority of cases (74%) the
assumptions of the metapopulation paradigm were not tested. Breeding patch isolation
via limited dispersal and/or strong site fidelity was the most frequently implicated or
tested metapopulation condition, however we found strong evidence that amphibian
dispersal is not as uniformly limited as is often thought. The frequency distribution of
maximum movements for anurans and salamanders was well described by an inverse
power law. This relationship predicts that distances beneath 11-13 and 8§-9 km,
respectively, are in a range that they may receive one emigrating individual. Populations
isolated by distances approaching this range are perhaps more likely to exhibit
metapopulation structure than less isolated populations. Those studies that covered
larger areas also tended to report longer maximum movement distances — a pattern
with implications for the design of mark-recapture studies. Caution should be exercised
in the application of the metapopulation approach to amphibian population conserv-
ation. Some amphibian populations are structured as metapopulations — but not all.
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M. A. S.: Dept of Zoology, Univ. of Guelph, Guelph, ON, Canada NIG 2W1).

The importance of the spatial element in ecology has growth in the past thirty years (Hanski 1999) with
long been recognized (Andrewartha and Birch 1954), but  increased emphasis paid to concepts such as the
its consideration has undergone a period of distinct spatial nature of population dynamics and the spatial
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partitioning of populations’ genetic variability. The
metapopulation approach, first outlined by Levins
(1969, 1970), has been especially insightful for the
development of spatial ecology and its application to
conservation. In simple terms, a metapopulation is a
collection of partially isolated breeding habitat patches,
connected by occasionally dispersing individuals
whereby each patch exists with a substantial extinction
probability. Thus, long-term persistence occurs only at
the regional level of the metapopulation. There are
currently many variants of the metapopulation concept
ranging from very simple models utilizing a minimum of
data (Levins 1969) to much more complex models which
incorporate many environmental variables (Sjogren
Gulve and Ray 1996, Harrison and Taylor 1997, Hanski
1999). The most useful function of this continuum of
metapopulation theory has been to integrate spatially
structured interactions between local populations with
processes occurring within populations and thereby
enable better assessment of population viability.

Models more realistic than the initial Levins approach
consider the effects of patch area, shape and isolation,
and the effect of the non-habitat between patches on the
likelihood of patch extinction or colonization (Hanski
1999). This addition of realism has been accompanied by
an exponential increase in the number of biological
systems examined for metapopulation structure (Hanski
1999). However, rapidly increasing empirical use of
metapopulation concepts, without clear tests of the
theory’s applicability, may reduce the precision with
which the term metapopulation is used (Freckleton and
Watkinson 2003, Pannell and Obbard 2003). For in-
stance, conservation strategies may be misdirected if
similar species are considered a priori to exhibit similar
population structure and dynamics in the absence of
evidence to the contrary or if departures from simple
metapopulation models are not clearly detailed (Hanski
and Simberloff 1997). It has been stated that because
metapopulation dynamics are concerned mostly with the
presence or absence of species in local populations, the
sampling of any specific local populations would not
need to be as intense (Alford and Richards 1999).
Clearly this will be a decision with dire consequences if
there is no true metapopulation structure at all. Such a
conclusion is only valid for a simple metapopulation and
therefore it would also be a mistake if a more extended,
complex metapopulation was actually modeled (Harri-
son and Taylor 1997). Therefore, the issue of whether or
not populations of amphibians, or any taxa, form a
metapopulation is not merely semantic but is relevant to
their conservation and management.

Certainly, where disjunct breeding patches contain
individual populations that exist in a shifting balance
between extinctions and recolonisations via dispersing
individuals the metapopulation approach is an attractive
theoretical construct (Hanski 1999). Many temperate
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amphibians do use spatially disjunct breeding habitat
(Duellman and Trueb 1986), and are often regarded as
poor-dispersers with high site fidelity (Duellman and
Trueb 1986, Sinsch 1990, Blaustein et al. 1994, Beebee
1996, Berry 2001). In light of these observations, it
appears highly probable that amphibian populations
likely do operate as metapopulations (Harrison 1991,
Alford and Richards 1999, Marsh and Trenham 2001).
“...0ur review of the literature suggests that many if not
most amphibians exist in metapopulations’ (Alford and
Richards 1999). Yet the assumptions of limited dispersal,
high site fidelity and evident metapopulation structure in
amphibians have not been stringently tested, and we do
so here.

We examined the literature for all references to
amphibians as metapopulations using Current Contents,
Scientific Citation Index, and other published reference
lists. We tested whether the published literature for
amphibians had addressed the four conditions deemed
necessary for the existence of simple metapopulation
structure (Hanski et al. 1995, Hanski 1999), and whether
amphibians are indeed of low vagility and high site
loyalty. Although the metapopulation concept has
been extended to include population structures not
described by these conditions (Harrison and Taylor
1997, Hanski 1999), our analysis is restricted to these
simple conditions for the single reason that simple,
stochastic metapopulations are likely good models for
real populations living in highly fragmented landscapes
(Ovaskainen and Hanski 2004) — a situation which
includes many temperate, pond-breeding amphibians
(Marsh and Trenham 2001). If populations inhabiting
habitat patches are best described by simple metapopu-
lation models that are described by Hanski’s four
conditions, then the collection of empirical data, ad-
vantageous to conservation and management, is rela-
tively simple. Thus, to review the applicability of the four
conditions of a simple metapopulation to amphibian
ecology is timely and necessary.

Our secondary focus is upon Hanski’s 3rd condition
of limited dispersal ability. Previous reviews of amphi-
bians and the metapopulation concept (Alford and
Richards 1999, Marsh and Trenham 2001) focused
primarily on the Hanski’s 1st condition — that breeding
ponds constitute separate and individual breeding
populations. While both reviews identified the impor-
tance of dispersal for determining the range of recolo-
nisation — a comprehensive review of dispersal abilities
in relation to the metapopulation concept was not
completed and our review is therefore complimentary.
It is also timely, for most metapopulation models assume
that metapopulation dynamics are dominated by short
distance movements (Hanski 1999, Baguette 2003), and
if we underestimate the likelilhood of long distance
dispersal we risk either incorrectly estimating the scale
of a metapopulation effect, or incorrectly attributing
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metapopulation structure to a system where local
dynamics are more important than regional (i.e. not a
metapopulation). Thus, correctly estimating long-dis-
tance dispersal lies at the heart of determining the
appropriate scale of a metapopulation approach.

We compiled a comprehensive list of the longest
distances moved by amphibians in both mark-recapture
and displacement studies (Tables 3 and 4). To test
whether the low-vagility hypothesis was caused by a
lack of long-distance dispersal data in amphibians
caused by small study areas we subsequently compared
these movement distances to the maximum distance
covered by the field site. If not recorded directly by the
author, the maximum observable distance was most
frequently entered as the diagonal of the figure doc-
umenting the study site — likely a liberal interpretation
of maximum distance measurable.

The title of our review was inspired by that of
Freckleton and Watkinson (2003) who have asked a
similar question of the utility of the metapopulation
concept to plant ecology.

Amphibians and Hanski’s four metapopulation
conditions

Hanski outlines four conditions necessary to demon-
strate the existence of a metapopulation effect (Hanski
and Kuussaari 1995, Hanski et al. 1995, Hanski 1999): 1)
habitat patches support local breeding populations, 2)
no single population is large enough to ensure long-term
survival, 3) patches are not too isolated to prevent
recolonisation, and 4) local dynamics are sufficiently
asynchronous to make simultaneous extinction of all
local populations unlikely. Someone who observes a
species with high site-fidelity, limited dispersal and
apparently disjunct breeding patches, may frequently
and implicitly, evaluate (or accept) these assumptions a
priori. Through an examination of studies in the
literature involving amphibians where the term metapo-
pulation or population subdivision was used, we exam-
ined whether these studies had tested, not tested or
assumed the importance of each of these conditions
(Appendix 1). In some cases, it was unclear whether a
study had “not tested” a Hanski Condition or whether it
had been “assumed” to be accurate. Examples of two
common differences occurred where a study involved a
genetic analysis of metapopulation structure, (Rowe et
al. 2000), or where a study was dependant on the
assumption of limited dispersal. In the first scenario of
a genetic metapopulation Condition 1 (that habitat
patches support local breeding populations) is mathe-
matically necessary to support the existence of a
metapopulation, and was therefore considered as as-
sumed, rather than not tested. In the second scenario of
limited dispersal, Condition 3 (limited dispersal with the
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potential for recolonisation), was coded as assumed if
there was an implication in the manuscript text that
dispersal beyond a certain distance was expected to be
impossible (Conroy and Brook 2003, Woodford and
Meyer 2003).

Clearly there are a wide range of population condi-
tions that have been called, “metapopulations” (Harri-
son and Taylor 1997), and we never suggest that the
simple, stochastic type of metapopulation described by
Hanski’s four conditions is the only type of metapopula-
tion that exists. Rather, our goal was to investigate the
frequency with which these simple models were actually
tested by using a diverse taxa for which it has been
suggested that the simple metapopulation was likely the
predominant population condition (Harrison 1991,
Alford and Richards 1999). Additionally, it was our
hope to focus attention on the increasingly extended
definition of the term metapopulation. We agree with
Pannell and Obbard (2003) that the term, metapopula-
tion should not be extended to include every instance
where a species inhabits discrete habitat patches that
may or may not be involved in population structure. If
the term is extended until it includes practically all
situations then it’s utility is compromised as it is no
longer falsifiable.

In our review we examined all instances where
metapopulation was used in the title, abstract or key-
words of journal articles or theses that studied amphi-
bians. We included those articles that did not explicitly
test a Hanski style metapopulation — because this
manner of untested, a priori, defining of metapopula-
tions is part of the trend we examine, and wish to draw
attention to. In the instance where authors relied on
previously published material we considered that condi-
tion to have been tested.

The majority (73.6%) of the possible 212 Hanski
metapopulation conditions (53 articles x four condi-
tions) were assumed or untested in the amphibian as
metapopulation literature (Table 1). The most frequently
tested condition was of isolation, although the dispersal
ability of the amphibian species was rarely tested directly.
Even though dispersal was indirectly estimated with
genetics in 45% of the cases, the a priori assumption was
that the amphibian was of low vagility. Any distance
larger than one kilometre (Berven and Grudzien 1990,
Sjogren 1991, Waldick 1997, Vos and Chardon 1998,
Newman and Squire 2001, Conroy and Brook 2003), two
kilometres (Hranitz and Diehl 2000), or several hundred
meters (Reading et al. 1991, Skelly, et al. 1999) were
referred to as critical distances beyond which amphibian
dispersal would not penetrate. In fact, of the 53-
amphibian/metapopulation studies, all explicitly tested
or assumed that ponds were isolated due to the limited
dispersal and/or high site fidelity of amphibians. 42 of 53
studies (79%) implicated this limited dispersal as the, or
one of the, primary rationales behind the utility of the
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Table 1. Literature review of the metapopulation paradigm in amphibian ecology. Fifty-three studies regarding amphibians and
population sub-division were examined regarding their explicit or implicit testing of the four conditions necessary for a

metapopulation effect (Hanski et al. 1995).

Habitat patches support
local breeding population

No single population is
large enough to ensure
long-term survival

Patches are not too isolated
to prevent recolonisation:
isolation due to limited

Local dynamics are
sufficiently asynchronous
to make simultaneous

dispersal extinction of all local
population unlikely
Not tested 20 37 0 45
Tested 11 10 32 3
Assumed 22 6 21 5

metapopulation process. Interestingly, studies that re-
jected the metapopulation paradigm (10/53) did so
because there was judged to be too much dispersal
among patches.

Amphibian site loyalty and movement

The literature contains many references that explain the
poor dispersal ability of amphibians as being a con-
sequence of their physiology and behavior (Duellman
and Trueb 1986, Sinsch 1990, Blaustein et al. 1994).
Amphibian skin is highly permeable and amphibians
therefore have a stringent dependence on moisture
(Duellman and Trueb 1986). Additionally, amphibians
can show extreme site loyalty (Blaustein et al. 1994).
Many individual studies have demonstrated that amphi-
bians are found at the same location between census
years and, where individuals have been followed through
time, their movement is limited (Sinsch 1990) (Table 2).

Nevertheless, in our review we found that while the
view of limited amphibian dispersal may be true for
some species, it clearly does not hold for all. Among 166
journal articles concerning 90 species recording the
maximum distance moved, while 44% of the amphibian
species moved no farther than 400 m (Tables 3 and 4),
5% were capable of movements greater than 10 km
(Table 5). This literature review sampled much more of
total salamander diversity (37 species of 352 worldwide,
10.5%) than anuran diversity (53 species of 3848 world-
wide, 1.5%) (Duellman and Trueb 1986), and there were
evident differences between these groups. Nearly one
half (44%) of the anuran species displayed maximum
dispersal distances greater than one kilometre, and 7% of
frogs were observed to have maximum dispersal dis-
tances greater than 10 km (Table 4). This is surprising
considering that one kilometre has appeared indepen-
dently in the literature as a magic number beyond which
amphibian populations would be isolated from dispersal
events (Berven and Grudzien 1990, Sjogren 1991,
Waldick 1997, Vos and Chardon 1998, Newman and
Squire 2001, Conroy and Brook 2003); and 15 km has
been defined as the maximum migratory range (Sinsch
1990). Amphibian species truly do appear to be site-loyal
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on average, yet the frequency histogram of maximum
distances moved is better fit by a power law than an
exponential distribution (power (log-log) R®> = 0.67,
exponential (log-normal) R = 0.25) (Figs 1-3). In the
power relationship, a proportion of the individuals are
not described by that average and move long distances.
This proportion is larger in the power relationship than
in one described by an exponential function. If these
long-distance-dispersers were frequent it would reduce
the likelihood of support for the paradigm of metapo-
pulation structure through isolation. Such a high rate of
dispersal would effectively unite disjunct populations
into a single unit — or patchy population ((Harrison
1991, Harrison and Taylor 1997) and not as Freckleton
and Watkinson (2003)). If any metapopulation structure
were to exist in this case, it would more likely be at a
larger spatial scale than predicted by an exponentially
distributed frequency distribution. Thus, it is incorrect to
infer isolation from observed philopatry.

Although 94% of the maximum dispersal distances for
salamanders are less than 1 km (Table 3), the frequency
distribution of distances was also an inverse power
function (Fig. 2). Therefore, although most may not
move very far, there is a strong likelihood that some
individuals may complete long-distance movements. For
example, Plethodon glutinosus is a remarkably site loyal
animal across ages and sexes (Wells and Wells 1976).
Using data provided in the paper for this species, we
found that an inverse power law explained 74% of the
variation in movement frequency for males (from Wells
and Wells (1976) Fig. 1). In this case, although it is clear
that most individuals are unlikely to move >10 m,
according to this relationship there is an appreciable
chance (~0.4%) that an individual could move one
kilometre. Indeed, recent findings document that for
some pond-breeding salamanders, rates of inter-pond
migration are high enough to suggest that the fit of the
metapopulation paradigm to this particular species was
less than was expected (Trenham 1998).

Clearly, most amphibian species do not move very
far, but surprisingly, greater than 7% of anurans we
surveyed were capable of movements of greater than
10 km. This leptokurtic, inverse-power relationship
neither supports nor rejects the model of the poorly
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Table 2. Examples of site fidelity in amphibians.

Species Fidelity

Source

Triturus vulgaris
between seasons.
Plethodon cinerus
Triturus vulgaris
Bufo bufo
the same breeding ponds.
Bufo marinus No significant homing effect.
Bufo marinus
or 165 m.
Bufo americanus
Pseudacris triseriata
triseriata
Pseudacris maculata
Hyla regilla
recaptured the following year.
Mixophyes iteratus
marked.
Rana sylvatica
pond or natal pond respectively.
Rana sylvatica
individuals.
Rana pipiens
Rana muscosa
seasons.
Rana muscosa
days after a 630 m translocation.
Rana lessonae and
Rana ridibunda
Rana aurora draytonii

capture pond.

Not a single one of 2500 marked individuals changed breeding ponds
Philopatric to the same cover object between years.

Philopatric to the same cover object between years.

93% of females and 96% of males that survived between years, returned to

Return to their home site with 100% accuracy when displaced up to 70 m,

Returned to within 5 m of their original site after a 235 m translocation.
The majority of recaptures were within 100 m of the initial capture site.

The maximum distance moved is only 250 m.
71% of males were found in the same portion of the same pond when

89% of individuals were recaptured 5 m or less away from where they were
100% of adults and 82% of juvenile are faithful to their first breeding
The mean distance between captures was only 11.25 m for 298

98% of returned to their home pond after a one-kilometer displacement.
89% percent of were recaptured at the same pond between breeding

50% of translocated individuals returned to their initial site within 20
88% of individuals monitored between years did not move from their

75% did not move from their site over the course of a year and 90% of

Bell 1977

Placyk and Graves 2001
Dolmen 1981

Reading et al. 1991
Seebacher and Alford 1999
Brattstrom 1962, Carpenter
and Gillingham 1987

Dole 1972

Kramer 1973

Spencer 1964
Jameson 1957

Lemckert and Brassil 2000
Berven and Grudzien 1990
Bellis 1965

Dole 1968
Pope and Matthews 2001

Matthews 2003
Holenweg Peter 2001
Bulger et al. 2003

these philopatric individuals were never more than 60 m from the water.

dispersing amphibian. Concluding all amphibians are
poor dispersers is as incorrect as stating that all
mammals move long distances. Rather, the power
relationship demonstrates that, as a group, amphibians
exhibit a wide range of dispersal strategies. As has been
demonstrated (Stumpel and Hanekamp 1986, Platx et al.
1990, Tunner 1992, Vos et al. 2000, Hayes et al. 2001,
Smith 2003), some amphibian species are capable of
movements that are surprising for presumably poorly
dispersing animals. Our review suggests that anurans
have an average maximum movement recorded (2.02 km)
that is two times as large as the distance commonly
reported as wide enough to result in population isola-
tion. The diversity of maximum movement recorded is
apparent in the wide variance (2.40 E +07). Indeed, the
anuran average and variance are an order of magnitude
larger than the same patterns in salamanders (Table 5).
Fitting an inverse power law to the movement frequency
patterns for anurans and salamanders results in the
explanation of 70% and 55% of the variance. Specific
expectations for an individual species should not be
based on a pattern demonstrated using many species and
independent studies. However, note that our analysis
makes a general prediction regarding the spatial scale at
which one should expect local population differentia-
tion: that distance where the inverse power law predicts a
number of migrants equal to one. Genetically, popula-
tions tend to be locally differentiated when N.m <«1
(Kimura and Maruyama 1971). For salamanders, the
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inverse power law predicts that at least one individual is
likely to move distances <8—9 km and for anurans at
least one individual is likely to move 11-13 km. When
pond networks are separated by these approximate
distances — where dispersal is possible, but not common

— is more likely to be a scale where the simple, stochastic
metapopulation approach is applicable for amphibians.
Such a rule will obviously not hold for all species all of
the time (the environment between habitat patches, the
species, the condition of individuals will all affect
dispersal abilities and will differ), but our generalization
is a hypothesis informed by the literature that invites
further testing.

Others have noted that the perception of limited
amphibian dispersal may reflect the scale at which
amphibian-researchers operate, rather than the scale at
which amphibians disperse (Turner 1960, Dole 1971,
Staub et al. 1995, Marsh et al. 1999, Pope et al. 2000).
Among those studies where there was enough data
reported to estimate the longest axis of the study area,
that distance was therefore the longest possible distance
that could have been recorded. A regression of maximum
distance dispersed on the size of the studies long axis
resulted in a significant positive relationship where
72.65% of the observed variance in maximum dispersal
distance is explained by having a larger study site
(Fig. 4). This relationship suggests that our under-
standing of the maximum distances amphibians can
move is being underestimated by the site size where we
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Table 4. (Continued).

ECOGRAPHY 28:1 (2005)

Method Age Reference

Ratio study site

Longest measure

Max distance

Species

of study site (m) to max distance

recorded (m)

Berven and Grudzien 1990

Howard and Kluge 1985
Bellis 1965

Adult
Juvenile
Adult

MRR(TOE)
MRR(TOE)
MRR(TOE)

— \O

1.1
1

2287.00
65.84

500.00
2530.00
89.61
460.00

Rana sylvatica
Rana sylvatica
Rana sylvatica

Seitz et al. 1992

Jameson 1955
Pearson 1955

Adult
Adult
Adult

MRR(RAD)
MRR(TOE)
MRR(TOE)

380.39
825.00

Rana temporaria
Syrrhophus marnocki
Scaphious holbrooki

study such movement. Our review makes a simple
prediction that monitoring larger areas in the future
will result in the discovery of longer distance movements
for both anurans and salamanders.

Case study

Some amphibians do function as metapopulations (Gill
1978, Sjogren 1991, Sjogren Gulve and Ray 1996, Vos
et al. 2000). However, examining the amphibian-as-
metapopulation literature indicates that the generaliza-
tion that all amphibians will operate as metapopulations
(Alford and Richards 1999) is not supported. The
majority of the metapopulation conditions are either
not tested or are assumed to hold in the amphibian as
metapopulation literature. Instead, it is often taken as a
foregone conclusion that amphibians operate as meta-
populations. Bulger et al. (2003), for example, invoke
metapopulation structure without having tested any of
the related (Hanski and Kuussaari 1995, Hanski et al.
1995, Hanski 1999) hypotheses. For species we have
examined ourselves (Bufo americanus, Bufo fowleri,
Pseudacris crucifer, Rana sylvatica, Rana pipiens, Rana
clamitans and Rana catesbeiana), both locally (on a
scale of <10 km) and regionally (for B. fowleri <300
km), we found no evidence of metapopulation structure
at either scale, and concluded that while there was not
enough movement between populations separated by
many tens of kilometres to support a metapopulation
effect, there was likely too much dispersal occurring
between the habitat patches separated by 10 km or less
(Smith 2003). Most of these species are common to the
area we investigated, but B. fowleri is currently listed as
Threatened by the Committee on the Status of Endan-
gered Species (COSEWIC) in Canada largely due to its
isolated and fragmented habitat. Indeed, a metapopula-
tion based conservation approach was intuitively appeal-
ing for this species, as, prior to our analysis, it
qualitatively appeared to meet all of Hanski’s four
conditions.

To reconcile the acceptance of the metapopulation
approach in amphibian conservation and ecology with
the lack of stringent testing of hypotheses we compared
those characteristics common to amphibians as meta-
populations (Marsh and Trenham 2001), 1) population
dynamics determined by pond-based-processes, 2) com-
mon local extinction and colonisation, 3) local extinction
occurring in suitable habitat, 4) limited dispersal causing
isolation) to the studies we have reviewed and the species
for which we have data.

The majority (33/53) of the studies we examined had
either implicitly assumed, or had tested, that the “ponds
as patches” view was an accurate depiction of an
amphibian population. Recently, Skelly and Meir
(1997), Pope et al. (2000) and Marsh and Trenham

119



Table 5. Summary table for the analysis of maximum reported distance moved for 164 studies of 90 species of amphibians.

Amphibians Frogs Salamanders
Number of species in dispersal studies 90 53 37
Number of dispersal studies 166 102 64
% max dispersal <1 km 70 56 94
% max dispersal <400 m 44 31 64
% max dispersal >10 km 5 7 2
Average (m) 2023.54 2922.51 576.75
Standard deviation (m) 4895.61 5929.89 1664.92
Variance (m~) 2.40E+07 3.52E+07 2.77E406

(2001) have criticized the assumed primacy of the pond.
For instance, with Rana pipiens, any apparent metapo-
pulation structure was removed when the non-pond
variable of “summer habitat” was removed from the
analysis (Pope et al. 2000). In our own work with
B. fowleri, we know that the number of non-reproductive
one year olds at year (t) explains nearly 80% of the
variation in captured adults in year (t+1) (Green and
Smith unpubl.). Although strong, this relationship was
derived using only 5 yr worth of data and excludes one
year where it was suspected that migration boosted the
observed number of reproductive animals in year (t+1).
Thus while population processes occurring in the pond
are clearly important, there is strong evidence that events
occurring outside the pond (migration, over-wintering
success) also contribute the observed population dy-
namics. Therefore, instead of asking is the pond a patch
( ~Hanski Condition 1), we should ask is the patch only
the pond? Stated another way; perhaps the easily
spatially delineated feature “pond” is not the disjunct
habitat one should model. The application to amphibian
conservation is clear, for if one adopted a metapopula-
tion based conservation approach on the hypothesis of
ponds as metapopulation patches — and summarily
protected those patches — without testing whether the
habitat critical to the species survival was actually
described by pond boundaries it is possible that the
truly important habitat would not be protected.

BB e

30 1

25 1

20 1

Percentage of data set

Maximum distance moved (200 m bins)
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Forty-five out of 53 articles in the literature (85%) did
not examine the frequency of local extinction and
colonization. A limited number of between-year occu-
pancy transitions severely restrict the researcher’s ability
to determine whether extinctions and colonizations are
actually common features of the network of breeding
assemblages (Thomas et al. 2002). For instance, within
the local habitat patch assemblage we monitor in
Ontario, there have been 38 observed colonisation and
31 extinction events for B. fowleri measured over 15 yr
at Long Point, resulting in average colonisation and
extinction rates of 0.2798 and 0.2481 respectively.
Compared to values for other amphibian species
(Table 2 of Marsh and Trenham (2001)), the values for
B. fowleri are amongst the highest and yet there is no
evident metapopulation effect involved in B. fowleri
population dynamics (Smith 2003). Due to relatively
high rates of local extinction and colonisation in B.
fowleri, a conservation strategy might be based on the
faulty notion that these toads occupy local and regional
metapopulations when they are actually more intimately
connected by regular dispersal (i.e. a patchy population).

One finding recorded regularly in the literature was
that local amphibian extinctions were deterministic, not
stochastic, as habitats underwent succession (Sjogren
1991, Skelly et al. 1999, Marsh and Trenham 2001,
Bradford et al. 2003). Indeed, at Long Point the
environment is constantly undergoing succession, and

Fig. 1. Frequency histogram of the
maximum distance moved by
amphibians from 166 journal articles
(90 species). 200 m size bins. 30% of
the reviewed studies had maximum
movement distances >1 km. y =
22.39x %763 R =0.7031.
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Fig. 2. Frequency histogram of the B0 e

maximum distance moved by
salamander species from 62 journal

articles (37 species). 200 m size bins. Six 50 g

percent of the reviewed studies had
maximum movement distances >1 km.
y =6.23x 04823 R2 —(.544.

Percentage of data set

)
7.

ponds are likely to be exposed to deterministic degrada-
tion (as B. fowleri breeding habitat) as they go through
succession. We suspected that at least several of the
observed extinctions at Long Point were due to succes-
sion reducing habitat quality to such an extent as to
cause extinction. Perhaps the effects of this deterministic
change are predominant over any stochastic changes we
have measured (Skelly et al. 1999), but a quantitative
analysis of this question is beyond the scope of this
investigation. Clearly though it remains important to do
so (Ellner and Fussmann 2003), as differentiating
between the importance of stochastic and deterministic
changes will inform conservation decisions regarding
whether management should focus on landscape factors
or local habitat conditions.

The supposition of limited dispersal causing isolation
was the most frequently implicated reason for evident, or
assumed, metapopulation structure in amphibians. In

Percentage of data set

Fig. 3. Frequency histogram of the
maximum distance moved by anurans from
102 journal articles (53 species). 200 m size
bins. Forty-four percent of the reviewed
studies had maximum movement distances
>1 km. y =13.749x ~%93% R2=0. 6797.
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Maximum distance moved (200 m bins)

our own work with B. fowleri, we concluded that
dispersal was likely the primary factor implicated in
the lack of metapopulation structure we demonstrated —
both too little and too frequent (Smith 2003). At a local
scale of <10 km, individuals dispersed over a distance
and at a rate that made even isolated populations
connected to the whole. Regionally ( <300 km), popula-
tions were too isolated for even occasional migrants to
recolonise habitat following local extinction. We suspect
that the generalization of limited amphibian dispersal
causing population isolation, and therefore metapopula-
tion structure, may not be warranted as frequently as the
literature implies (Alford and Richards 1999). This is
especially true for pond-breeding anurans species with a
high turnover of local populations and dependent upon
dispersal for its persistence, for without the effect of
rescue from neighboring populations, they will suffer
greater cumulative local extinctions (Green 2003). We

S
Maximum distance moved (200m bins)
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Fig. 4. Relating the maximum movement recorded with the
maximum size of the study area.

find that movement distances for anurans are an order of
magnitude greater (~10 km) than has previously been
thought.

Conclusions

Our review demonstrates that the applicability of the
metapopulation paradigm to amphibian species is lar-
gely dependant on the hypothesis of limited dispersal. As
there are a wide range of dispersal abilities within
amphibian species, we should be cautious with the
indiscriminant application of the metapopulation ap-
proach to amphibians — especially where conservation
decisions are to be based on the assumptions of isolation
and metapopulation structure though limited dispersal.
Although amphibians are predominantly site-loyal and
of low vagility, they can move distances much greater
than previously anticipated. Their dispersal capabilities
suggest that occasional migrants may connect popula-
tions separated by tens of kilometers. Although it is clear
that type and quality of the landscape occurring between
habitat patches will affect the number of successful
immigrants (Ray et al. 2002); we make the general
suggestion that for salamanders and anurans, population
differentiation is most likely to occur at scales upward of
10 km. If somewhat regular movement of individuals can
connect populations separated by distances smaller than
this, then the effective number of populations is reduced.
If reduced to one, then simple patch occupancy models
are ineffective tools for research or conservation as they
ignore local dynamics (Hanski 1998). All amphibians are
not metapopulations and not all amphibians are dis-
persal poor. The paradigm of pond-breeding amphibian
populations as metapopulations has been adopted
before there have been sufficient data available to
evaluate it (Hanski and Simberloff 1997). If the meaning
of the term “metapopulation” has lost clarity (Smedbol
et al. 2002), researchers would do well to test the
elementary predictions of a simple metapopulation prior
to announcing that their particular study organism/
population constitutes one. If a researcher were encour-
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aged to use the term metapopulation without even
simple tests of whether necessary conditions were met,
then the metapopulation would no longer be a falsifiable
hypothesis. We feel that the metapopulation concept has
much greater utility, and scientific integrity, when it is
phrased as a hypothesis.

It is not our intent to summarily reject the positive
influence the development of the metapopulation con-
cept has had on ecology and conservation. Undoubtedly
there are amphibian species for which the metapopula-
tion assumption of pond isolation due to limited
dispersal is valid. However, the generality of this
assumption is not supported by data. The metapopula-
tion approach — especially regarding habitat patch
isolation due to limited dispersal — must be more
stringently tested and more clearly reported.
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Appendix 1. Testing of metapopulation conditions. 0 =not tested, 1 =tested, and 2 =assumed.
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