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Peak assemblage

Methodology

The peak assemblage table was derived from applying a consistent algorithm to the pooled data. The
abundances were summed over all the sites for each month for all of the 19 species. The maximum count,
rather then the low water count was used in the case of the observations of dunlin in 2017/18. This was
considered to most likely match the method used for the data that was obtained from previous years surveys.
The species abundances were first summed over all sites to produce an assemblage count for all winter months.
For each winter season the month with the maximum assemblage value was found. The abundances of each
of the species recorded in this month was taken as a measure of their individual contributions to this peak
assemblage. This is a consistent methodology. However it differs from the data tables produced in the report
in 2017. In the previous analysis the peak species abundances referred to the maximum observed count across
all the months of each season. A proportional contribution could not be calculated using this approach, as
the sum of the species counts exceeded the total for the peak assemblage.
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Data

Counts data

Show	 10 	entries Search:

Showing	1	to	10	of	28	entries Previous 1 2 3 Next

Species 1999 2000 2001 2002 2007 2008 2010 2011 2012 2013 2014 2015 2016 2017

All All All All All All All All All All All All All All All

1 Avocet 31 0 0 161 1945 990 260 8 1900 1190 65 1074 599 1315

2 Bar-tailed
godwit 0 0 0 0 0 240 10 0 1 0 0 0 5 2

3
Black-
tailed
godwit

53 0 0 0 1460 1800 600 632 2760 3602 361 961 419 1277

4 Cormorant 0 17 5 11 145 182 1 15 0 15 0 1 13 0

5 Curlew 0 9 1 3 56 56 40 114 154 57 27 77 77 170

6
Dark-
bellied
Brent
goose

0 0 0 0 0 0 0 0 0 0 0 0 0 14

7 Dunlin 7750 7650 3677 9432 3433 1700 750 2722 1545 2690 6425 679 5256 7140

8 Gadwall 0 0 0 0 0 0 0 0 0 0 0 0 0 7

9 Golden
plover 0 0 0 0 0 0 0 0 0 0 2 0 300 355

10
Greater
white-
fronted
goose

0 0 0 0 0 0 0 0 0 0 0 0 0 0

	Copy CSV

Table of percent contribution to assemblage

Show	 10 	entries Search:

Showing	1	to	10	of	28	entries Previous 1 2 3 Next

Species 1999 2000 2001 2002 2007 2008 2010 2011 2012 2013 2014 2015 2016 2017

All All All All All All All All All All All All All All All

1 Avocet 0.4 0 0 1.6 22.5 14.4 10.2 0.2 21.9 14.5 0.9 32.2 5.9 9.1

2 Bar-tailed
godwit 0 0 0 0 0 3.5 0.4 0 0 0 0 0 0 0

3
Black-
tailed
godwit

0.6 0 0 0 16.9 26.2 23.5 15.4 31.8 43.9 4.9 28.8 4.1 8.9

4 Cormorant 0 0.2 0.1 0.1 1.7 2.6 0 0.4 0 0.2 0 0 0.1 0

5 Curlew 0 0.1 0 0 0.6 0.8 1.6 2.8 1.8 0.7 0.4 2.3 0.8 1.2

6
Dark-
bellied
Brent
goose

0 0 0 0 0 0 0 0 0 0 0 0 0 0.1

7 Dunlin 90.1 91.1 87.8 91.9 39.8 24.7 29.4 66.1 17.8 32.8 86.7 20.3 52 49.7

8 Gadwall 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 Golden
plover 0 0 0 0 0 0 0 0 0 0 0 0 3 2.5

10
Greater
white-
fronted
goose

0 0 0 0 0 0 0 0 0 0 0 0 0 0

	Copy CSV
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Peak assemblage values

Show	 10 	entries Search:

Showing	1	to	10	of	14	entries Previous 1 2 Next

Year Sum

All All

1 1999 8606

2 2000 8395

3 2001 4190

4 2002 10263

5 2007 8635

6 2008 6869

7 2010 2554

8 2011 4115

9 2012 8666

10 2013 8213

	Copy CSV

Barcharts

London Gateway

Top ten species
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The top three most abundant species are Dunlin, Black-tailed godwit and Avocet.
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The top three most abundant species are Dunlin, Black-tailed godwit and Avocet.

Generalised linear models for trends

Methodology

The use of regression as a method to formally analyse trends is greatly limited by the low sample size
and by the high variability between count values. A longer time series of observations could show serial
autocorrelation between the values forming a time series. Additional co-variates such as climatic effects might
also be taken into account. As there are only a small number of data points available, a regression analysis
could only provide evidence of a significant trend in the unlikely case of a monotonic year on year increase or
decrease. In the case of counts that may take low numbers regression analysis using normally distributed
errors may produce confidence intervals that fall below zero, which is impossible. Generalised linear models
of the negative binomial family which account for overdispersion are prefereable in this case. Plotting lines
derived from a negative binomial GLM with confidence intervals for the pre and post development periods
shows no indication of such a consistent trend.

London gateway

All species
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Mean differences

Methodology

As there is no evidence of consistent trends, the variability between years can be treated as if the were a
set of independent observations. This does not imply that there is no underlying relationship between the
total population of birds in consecutive, simply that random variability due to movements of flocks and
changes in the observability of the birds in combination with stochastic population fluctuations are adequate
explanations for the observed variability.

In this case the period becomes a factor with two levels. Data can be visualised as boxplots and means with
confidence intervals calculated from the variability around the mean values.

Aggregation

Boxplots and confidence intervals
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 showing superimposed means and 95% confidence intervals

T-test

##
## Welch Two Sample t-test
##
## data: Sum by Period
## t = -0.7768, df = 6.6254, p-value = 0.4641
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -6590.732 3359.418
## sample estimates:
## mean in group Pre mean in group Post
## 7073.143 8688.800

The t-test provides no evidence of a significant difference between the mean peak assemblages pre and post
works (p = 0.46).

Dunlin

Boxplots and confidence intervals
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T-test

##
## Welch Two Sample t-test
##
## data: Sum by Period
## t = 0.27169, df = 9.7662, p-value = 0.7915
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3434.144 4384.429
## sample estimates:
## mean in group Pre mean in group Post
## 4913.143 4438.000

The t-test provides no evidence of a significant difference between the mean peak assemblages pre and post
works (p = 0.79).

Black tailed godwit

Boxplots and confidence intervals
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 showing superimposed means and 95% confidence intervals

T-test

##
## Welch Two Sample t-test
##
## data: Sum by Period
## t = -1.156, df = 5.9146, p-value = 0.2922
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2389.9715 859.9715
## sample estimates:
## mean in group Pre mean in group Post
## 559 1324

The t-test provides no evidence of a significant difference between the mean peak assemblages pre and post
works (p = 0.29).

Avocet

Boxplots and confidence intervals
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 showing superimposed means and 95% confidence intervals

T-test

##
## Welch Two Sample t-test
##
## data: Sum by Period
## t = -1.0128, df = 9.9965, p-value = 0.335
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1167.2154 437.7296
## sample estimates:
## mean in group Pre mean in group Post
## 483.8571 848.6000

The t-test provides no evidence of a significant difference between the mean peak assemblages pre and post
works (p = 0.34).

Bayesian t-test

Methodology

There is an issue with regard to the interpretation of the result of such a test. Under null hypothesis
significance testing (NHST) it is not possible to accept the null hypothesis of no difference (Anderson et al.
2000). NHST simply fails to reject the null. The p value represents the probability of obtaining the data, or
data more extreme, given that the null hypothesis is in fact true . However the precise point null hypothesis
of exactly no difference between assemblage counts before and after the works is not a credible one. There
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must be some differences. The issue is whether any differences fall within acceptable bounds. Thus NHST
is problematic when the decision rule in question involves looking at the evidence in favour of the null
hypothesis. This is the case here as shown in the description of the decision rule provided in the report.

The initial target against which the success of the mitigation and compensation will be assessed shall be that
the sites in combination support an assemblage of wintering waterfowl at low tide comprising, on a 5-year
mean peak basis at least 7900 birds made up of, in particular, avocet, dunlin and black-tailed godwit in
similar proportions to those supported by North Mucking during the winters of 1999/2000 to 2002/2003
(considered in the context of the wider population trends)

The alternative to NHST is to adopt a Bayesian approach to inference. Under this approach he 5 year means
for peak abundances are not considered to be fixed quantities, but are themselves treated as random variables
with distributions. Bayes’ formula provides a formal mechanism of providing probabilities for unknown
quantities of interest. In this case the difference between µ1 and µ2 (the mean peak assemblages before and
after the works ) is an unknown quantity.

Bayes theorem states.

p(θ|D) = p(D|θ)p(θ)
p(D) Where θ = (µ1, µ2, σ1, σ2, v)

So, the posterior credibility of the combination of values for (µ1, µ2, σ1, σ2, v) is the likelihood of that
combination times the prior credibility of the combination, divided by the constant p(D). When it is assumed
that the data are independently sampled, the likelihood is the multiplicative product across all the data values
of the probability density of a t distribution. The prior is the product of the five independent parameter
distributions. The constant p(D) is the marginal likelihood, which may be obtained by integrating the product
of the likelihood and prior over the entire parameter space. This integral is difficult to compute analytically.
This difficulty limited the application of Bayesian methods before computational solutions using simulation
became available. However this limitation no longer exists. It is now computationally simple to fit the true
Bayesian model using tools supplied through R (Plummer 2018). This allows the full posterior distributions
of the parameter values to be obtained, leading to a richer and more informative analysis (Kruschke 2013).

Providing that uninformative prior probabilities for the parameters are used, applying Bayes theorem in
the context of a t-test will then provide credible intervals for the differences between means (Ellison 2004) .
Although the estimates may be numerically very similar to those derived from the confidence intervals of a
traditional t-test (Colegrave and Ruxton 2003 , Edwards (1996)), the interpretation of the result now directly
maps onto the required decision rule (RUBIN 1984).

The traditional t-test found that the best estimate for the pre-works mean as 484 and the post works mean
as 849 giving a point estimate difference between the means of 365.

The original target value of 7900 for the overall assemblage were derived from low water count data for the
four winter periods 1999/2000 to 2002/2003. The pre works data used in the t-test included some additional
observations as, These observations are helpful in establishing the range of variability for inference so have
been included. If it were desirable these values could be excluded and the analysis re-run without them.

Bayesian model fitting allows a formal evaluation of a decision rule based on the concept of the region of
practical equivalence (ROPE). This is an area around the null value of no difference which encloses those
values of the parameter that are deemed to be not importantly different from the null value for the practical
purposes of the study.

In this case any increase in assemblage numbers, even if not statistically significant, are of no practical
importance in evaluating whether Clause 10.5.4 has been met. The ROPE can therfore extend to the right
almost indefinitely. The choice of a left hand boundary for the ROPE has to be considered through a careful
evaluation of the available data. The target value was originally set at around 8000 birds. This is around
1000 higher than the first estimate of the pre-works mean. It would thus seem reasonable to set a ROPE
lying between -1000 and 1000.

The bayesian t-test is then run using the package BEST {Kruschke and Meredith (2018)} in R. The model
used completely non-informative vague priors for the parameters of interest in order to avoid subjectivity.
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The resulting simulation provided the full posterior distribution for the differences between the two means.

Aggregation

−10000 −5000 0 5000 10000 15000

Difference between mean peak species assemblages

µ1 − µ2

95% HDI
−5640 8630

mean = 1510

29.3% < 0 < 70.7%

80% in ROPE

The figure shows the full posterior distribution for the difference between the two means, which is treated
as a random variable and takes a t-distribution. The interpretation of the figure in terms of a decision rule
of the Bayesian t-test analysis is clear when the ROPE is superimposed on the distribution. Around 80%
of the posterior distribution for the difference between the two means lies within the ROPE. Although this
does imply that there is a 20% chance that the value could stil lie outside the ROPE, the analysis is still
being based on limited data. Intuitively it would be impossible to decide with certainty that the criteria had
been met based on many fewer data points. The analysis formalises the strength of the currently avaialable
evidence. As more data becomes available the probability that the criteria would be met becomes higher.
Bayesian analysis allows for updating posterior distributions through additional data.
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Dunlin

−5000 0 5000 10000

Difference between mean dunlin counts

µ1 − µ2

95% HDI
−6150 5300

mean = −433

57% < 0 < 43%

91% in ROPE

The analysis shows that around 90% of the posterior distribution falls within the ROPE. Thus there is very
strong evidence that the works have had no practical impact on overall dunlin numbers.
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Black tailed godwit

−2000 0 2000 4000

Difference between black tailed godwit counts

µ1 − µ2

95% HDI
−1470 2990

mean = 722

19.9% < 0 < 80.1%

98% in ROPE

In this case a small amount (around 2%) of the ROPE actually falls below the posterior 95% highest density
interval for the differences between the two means. The practical equivalence criteria is met to a very
high degree of certainty, given the addditional evidence that black tailed godwit numbers have significantly
increased over the period from 1998.
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Avocet

−1000 0 1000 2000

Difference between mean avocet counts

µ1 − µ2

95% HDI
−718 1560

mean = 433

18.9% < 0 < 81.1%

99% in ROPE

The practical equivalence criteria is again met to a very high degree of certainty, given the addditional
evidence that avocet numbers have significantly increased over the period from 1998.

Differences in proportional abundance

Methodology

The target goal was also stated in terms of proportional abundance. At least 7900 birds made up of, in
particular, avocet, dunlin and black-tailed godwit in similar proportions to those supported by North Mucking
during the winters of 1999/2000 to 2002/2003

Inspection of the stacked bar charts and the raw data shows that the proportion of dunlin in the assemblage
was higher between 1999 and 2002 than at present. As dunlin are small common waders a decrease in their
proportional contribution would be interpreted as a positive effect, rather than a negative one.
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Changes in proportional abundance of dunlin.

0.0

0.4

0.8

1.2

2000 2005 2010 2015

Year

P
ro

po
rt

io
n Period

Pre

Post

Proportional contribution of dunlin to peak assemblage values

Trend analysis for proportional abundance of dunlin using beta regression

In order to establish the signficance of the change generalised linear modelling based on the beta distribution
would provide the most robust approach. Proportions cannot be modelled with normally distributed errors.
The betareg package in R allows this {Grün et al. (2012)}

Yearly trend

##
## Call:
## betareg(formula = Proportion ~ Year, data = dunlin)
##
## Standardized weighted residuals 2:
## Min 1Q Median 3Q Max
## -1.5243 -0.9514 0.3101 0.6394 2.1324
##
## Coefficients (mean model with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 210.8212 84.1799 2.504 0.0123 *
## Year -0.1048 0.0419 -2.501 0.0124 *
##
## Phi coefficients (precision model with identity link):
## Estimate Std. Error z value Pr(>|z|)
## (phi) 4.299 1.625 2.646 0.00815 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##
## Type of estimator: ML (maximum likelihood)
## Log-likelihood: 3.661 on 3 Df
## Pseudo R-squared: 0.439
## Number of iterations: 141 (BFGS) + 4 (Fisher scoring)

Beta regression produces evidence of a statistically signficant (p=0.012) reduction in the proportional
contribution of dunlin to the species assemblage between 1999 and present. However the trend occurred prior
to the works cmencing.

Changes in species diversity

Although the criteria used to evaluate the impact of the works aimed to ensure a comparable mix of species
abundances, the decline in relative abundance of dunlin and the increase in the relative contribution of
other species may have increased species diversity. This is generally considered to be a positive outcome for
conservation.

In order to evaluate changes in species diversity a commonly used diversity index was calculated for the
assemblage. Shannnon’s index is based on proportional contributions of each species to the assemblage.

H = −
∑N
i=1 pi ln(pi)

Where pi is the proportional abundance of each species in an assemblage consisting of N species.

Shannon’s index was calculated by transforming the table of counts into a matrix and applying the diversity
function in the R package vegan {Oksanen et al. (2018)}
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Changes in mean Shannon’s index
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mean = 0.401

20.8% < 0 < 79.2%

94% in ROPE
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Peak abundances

Methodology

The peak abundances table was derived from applying a consistent algorithm to the pooled data. The
abundances were summed over all the sites for each month for all of the 19 species. The maximum count,
rather then the low water count was used in the case of the observations of dunlin in 2017/18. This was
considered to most likely match the method used for the data that was obtained from previous years surveys.
The maximum species abundances in any month within the winter season was taken as the peak abundance.
The peak assemblage in this case was calculated as the sum of the peak abundances over all the months. This
Produces a rather higher estimate of the peak assemblage than the previous methodology. In both cases the
proportional abundances of the species are calculated in realation to the sum. The two methodologies have
been included in order to assess the sensitivity of the conclusions to the method used to calculate the peak
assemblage. The substantive conclusions are unaltered and are not sensitive to the choice of methododlogy,
although some of the quantitative results are slightly different.
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Data

Counts data

Show	 10 	entries Search:

Showing	1	to	10	of	28	entries Previous 1 2 3 Next

Species 1999 2000 2001 2002 2007 2008 2010 2011 2012 2013 2014 2015 2016 2017

All All All All All All All All All All All All All All All

1 Avocet 399 7 379 323 1945 2300 260 361 2780 1378 913 1175 1507 1905

2 Bar-tailed
godwit 2 7 0 0 1 240 10 1 1 1 70 3 39 24

3
Black-
tailed
godwit

53 0 470 57 1460 1800 600 720 2760 3602 2430 961 2919 5372

4 Cormorant 0 17 17 22 233 182 1 17 32 18 27 18 30 0

5 Curlew 8 29 63 17 75 74 40 119 173 163 123 77 183 275

6
Dark-
bellied
Brent
goose

0 0 0 0 0 0 0 0 0 0 0 0 0 68

7 Dunlin 7750 7650 3677 9432 4105 1700 750 2722 5077 3580 6425 1024 5256 7140

8 Gadwall 0 0 0 0 0 0 0 0 0 0 0 0 0 29

9 Golden
plover 0 0 0 0 0 0 0 0 0 0 2 0 360 470

10
Greater
white-
fronted
goose

0 0 0 0 0 0 0 0 0 0 0 0 0 0

	Copy CSV

Table of percent contribution to assemblage

Show	 10 	entries Search:

Showing	1	to	10	of	28	entries Previous 1 2 3 Next

Species 1999 2000 2001 2002 2007 2008 2010 2011 2012 2013 2014 2015 2016 2017

All All All All All All All All All All All All All All All

1 Avocet 4.3 0.1 6.5 3 18.8 25.9 10.2 7.2 20.3 12 8.3 27.5 9.9 9

2 Bar-tailed
godwit 0 0.1 0 0 0 2.7 0.4 0 0 0 0.6 0.1 0.3 0.1

3
Black-
tailed
godwit

0.6 0 8.1 0.5 14.1 20.3 23.5 14.4 20.1 31.4 22.1 22.5 19.2 25.4

4 Cormorant 0 0.2 0.3 0.2 2.3 2 0 0.3 0.2 0.2 0.2 0.4 0.2 0

5 Curlew 0.1 0.3 1.1 0.2 0.7 0.8 1.6 2.4 1.3 1.4 1.1 1.8 1.2 1.3

6
Dark-
bellied
Brent
goose

0 0 0 0 0 0 0 0 0 0 0 0 0 0.3

7 Dunlin 83.5 88.7 63.3 87.6 39.6 19.1 29.4 54.5 37 31.3 58.5 24 34.5 33.8

8 Gadwall 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1

9 Golden
plover 0 0 0 0 0 0 0 0 0 0 0 0 2.4 2.2

10
Greater
white-
fronted
goose

0 0 0 0 0 0 0 0 0 0 0 0 0 0

	Copy CSV
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Peak assemblage values

Show	 10 	entries Search:

Showing	1	to	10	of	14	entries Previous 1 2 Next

Year Sum

All All

1 1999 9284

2 2000 8628

3 2001 5812

4 2002 10766

5 2007 10355

6 2008 8887

7 2010 2554

8 2011 4994

9 2012 13718

10 2013 11455

	Copy CSV

Barcharts

London Gateway

Top ten species
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The top three most abundant species are Dunlin, Black-tailed godwit and Avocet.

Thames estuary

All species
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The top three most abundant species are Dunlin, Black-tailed godwit and Avocet.

Generalised linear models for trends

Methodology

The use of regression as a method to formally analyse trends is greatly limited by the low sample size
and by the high variability between count values. A longer time series of observations could show serial
autocorrelation between the values forming a time series. Additional co-variates such as climatic effects might
also be taken into account. As there are only a small number of data points available, a regression analysis
could only provide evidence of a significant trend in the unlikely case of a monotonic year on year increase or
decrease. In the case of counts that may take low numbers regression analysis using normally distributed
errors may produce confidence intervals that fall below zero, which is impossible. Generalised linear models
of the negative binomial family which account for overdispersion are prefereable in this case. Plotting lines
derived from a negative binomial GLM with confidence intervals for the pre and post development periods
shows no indication of such a consistent trend.
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Dunlin
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Black tailed godwit
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Avocet
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Mean differences

Methodology

As there is no evidence of consistent trends, the variability between years can be treated as if the were a
set of independent observations. This does not imply that there is no underlying relationship between the
total population of birds in consecutive, simply that random variability due to movements of flocks and
changes in the observability of the birds in combination with stochastic population fluctuations are adequate
explanations for the observed variability.

In this case the period becomes a factor with two levels. Data can be visualised as boxplots and means with
confidence intervals calculated from the variability around the mean values.

Aggregation

Boxplots and confidence intervals
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Boxplot stats for peak aggregations in the two contrasted periods, 
 showing superimposed means and 95% confidence intervals

T-test

##
## Welch Two Sample t-test
##
## data: Sum by Period
## t = -1.5368, df = 5.2706, p-value = 0.182
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -12094.457 2956.971
## sample estimates:
## mean in group Pre mean in group Post
## 8040.857 12609.600

The t-test provides no evidence of a significant difference between the mean peak assemblages pre and post
works (p = 0.18).

Dunlin

Boxplots and confidence intervals
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 showing superimposed means and 95% confidence intervals

T-test

##
## Welch Two Sample t-test
##
## data: Sum by Period
## t = 0.19493, df = 9.952, p-value = 0.8494
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3383.466 4031.752
## sample estimates:
## mean in group Pre mean in group Post
## 5009.143 4685.000

The t-test provides no evidence of a significant difference between the mean peak assemblages pre and post
works (p = 0.85).

Black tailed godwit

Boxplots and confidence intervals
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Boxplot stats for black tailed godwit in the two contrasted periods, 
 showing superimposed means and 95% confidence intervals

T-test

##
## Welch Two Sample t-test
##
## data: Sum by Period
## t = -3.1329, df = 5.1558, p-value = 0.02482
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4392.2623 -452.7663
## sample estimates:
## mean in group Pre mean in group Post
## 634.2857 3056.8000

The t-test provides no evidence of a significant difference between the mean peak assemblages pre and post
works (p = 0.02).

Avocet

Boxplots and confidence intervals
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Boxplot stats for avocet in the two contrasted periods, 
 showing superimposed means and 95% confidence intervals

T-test

##
## Welch Two Sample t-test
##
## data: Sum by Period
## t = -1.4926, df = 8.4066, p-value = 0.1721
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1452.7407 305.2549
## sample estimates:
## mean in group Pre mean in group Post
## 801.8571 1375.6000

The t-test provides no evidence of a significant difference between the mean peak assemblages pre and post
works (p = 0.17).

Bayesian t.test

Methodology

There is an issue with regard to the interpretation of the result of such a test. Under null hypothesis
significance testing (NHST) it is not possible to accept the null hypothesis of no difference. NHST simply fails
to reject the null. The p value represents the probability of obtaining the data, or data more extreme, given
that the null hypothesis is in fact true. However the precise point null hypothesis of exactly no difference
between assemblage counts before and after the works is not a credible one. There must be some differences.
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The issue is whether any differences fall within acceptable bounds. Thus NHST is problematic when the
decision rule in question involves looking at the evidence in favour of the null hypothesis. This is the case
here as shown in the description of the decision rule provided in the report.

The initial target against which the success of the mitigation and compensation will be assessed shall be that
the sites in combination support an assemblage of wintering waterfowl at low tide comprising, on a 5-year
mean peak basis at least 7900 birds made up of, in particular, avocet, dunlin and black-tailed godwit in
similar proportions to those supported by North Mucking during the winters of 1999/2000 to 2002/2003
(considered in the context of the wider population trends)

The alternative to NHST is to adopt a Bayesian approach to inference. Under this approach he 5 year means
for peak abundances are not considered to be fixed quantities, but are themselves treated as random variables
with distributions. Bayes’ formula provides a formal mechanism of providing probabilities for unknown
quantities of interest. In this case the difference between µ1 and µ2 (the mean peak assemblages before and
after the works ) is an unknown quantity.

Bayes theorem states.

p(θ|D) = p(D|θ)p(θ)
p(D) Where θ = (µ1, µ2, σ1, σ2, v)

So, the posterior credibility of the combination of values for (µ1, µ2, σ1, σ2, v) is the likelihood of that
combination times the prior credibility of the combination, divided by the constant p(D). When it is assumed
that the data are independently sampled, the likelihood is the multiplicative product across all the data values
of the probability density of a t distribution. The prior is the product of the five independent parameter
distributions. The constant p(D) is the marginal likelihood, which may be obtained by integrating the product
of the likelihood and prior over the entire parameter space. This integral is difficult to compute analytically.
This difficulty limited the application of Bayesian methods before computational solutions using simulation
became available. However this limitation no longer exists. It is now computationally simple to fit the true
Bayesian model using tools supplied through R (Plummer 2018). This allows the full posterior distributions
of the parameter values to be obtained, leading to a richer and more informative analysis (Kruschke 2013).

Providing that uninformative prior probabilities for the parameters are used, applying Bayes theorem in the
context of a t-test will then provide credible intervals for the differences between means (Edwards 1996).
Although the estimates may be numerically very similar to those derived from the confidence intervals of a
traditional t-test, the interpretation of the result now directly maps onto the required decision rule.

The traditional t-test found that the best estimate for the pre-works mean as 802 and the post works mean
as 1376 giving a point estimate difference between the means of 574.

The original target value of 7900 for the overall assemblage were derived from low water count data for the
four winter periods 1999/2000 to 2002/2003. The pre works data used in the t-test included some additional
observations as, These observations are helpful in establishing the range of variability for inference so have
been included. If it were desirable these values could be excluded and the analysis re-run without them.

Bayesian model fitting allows a formal evaluation of a decision rule based on the concept of the region of
practical equivalence (ROPE). This is an area around the null value of no difference which encloses those
values of the parameter that are deemed to be not importantly different from the null value for the practical
purposes of the study.

In this case any increase in assemblage numbers, even if not statistically significant, are of no practical
importance in evaluating whether Clause 10.5.4 has been met. The ROPE can therfore extend to the right
almost indefinitely. The choice of a left hand boundary for the ROPE has to be considered through a careful
evaluation of the available data. The target value was originally set at around 8000 birds. This is around
1000 higher than the first estimate of the pre-works mean. It would thus seem reasonable to set a ROPE
lying between -1000 and 1000.

The bayesian t-test is then run using the package BEST {Kruschke and Meredith (2018)} in R. The model
used completely non-informative vague priors for the parameters of interest in order to avoid subjectivity.
The resulting simulation provided the full posterior distribution for the differences between the two means.
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Aggregation
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mean = 5290

14.5% < 0 < 85.5%

79% in ROPE

The figure shows the full posterior distribution for the difference between the two means, which is treated
as a random variable and takes a t-distribution. The interpretation of the figure in terms of a decision rule
of the Bayesian t-test analysis is clear when the ROPE is superimposed on the distribution. Around 80%
of the posterior distribution for the difference between the two means lies within the ROPE. Although this
does imply that there is a 20% chance that the value could stil lie outside the ROPE, the analysis is still
being based on limited data. Intuitively it would be impossible to decide with certainty that the criteria had
been met based on many fewer data points. The analysis formalises the strength of the currently avaialable
evidence. As more data becomes available the probability that the criteria would be met becomes higher.
Bayesian analysis allows for updating posterior distributions through additional data.
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Dunlin
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93% in ROPE

The analysis shows that around 90% of the posterior distribution falls within the ROPE. Thus there is very
strong evidence that the works have had no practical impact on overall dunlin numbers.
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Black tailed godwit
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Difference between black tailed godwit counts

µ1 − µ2

95% HDI
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mean = 2440

3.1% < 0 < 96.9%

96% in ROPE

In this case a small amount (around 2%) of the ROPE actually falls below the posterior 95% highest density
interval for the differences between the two means. The practical equivalence criteria is met to a very
high degree of certainty, given the addditional evidence that black tailed godwit numbers have significantly
increased over the period from 1998.
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Avocet
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12.2% < 0 < 87.8%

99% in ROPE

The practical equivalence criteria is again met to a very high degree of certainty, given the addditional
evidence that avocet numbers have significantly increased over the period from 1998.

Differences in proportional abundance

Explanation

The target goal was also stated in terms of proportional abundance. At least 7900 birds made up of, in
particular, avocet, dunlin and black-tailed godwit in similar proportions to those supported by North Mucking
during the winters of 1999/2000 to 2002/2003

Inspection of the stacked bar charts and the raw data shows that the proportion of dunlin in the assemblage
was higher between 1999 and 2002 than at present. As dunlin are small common waders a decrease in their
proportional contribution would be interpreted as a positive effect, rather than a negative one.
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Changes in proportional abundance of dunlin.
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Proportional contribution of dunlin to peak assemblage values

Trend analysis for proportional abundance of dunlin using beta regression

In order to establish the signficance of the change generalised linear modelling based on the beta distribution
would provide the most robust approach. Proportions cannot be modelled with normally distributed errors.
The betareg package in R allows this {Grün et al. (2012)}

Yearly trend

##
## Call:
## betareg(formula = Proportion ~ Year, data = dunlin)
##
## Standardized weighted residuals 2:
## Min 1Q Median 3Q Max
## -2.1505 -0.7284 0.0682 0.8100 1.5386
##
## Coefficients (mean model with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 245.94963 65.31655 3.766 0.000166 ***
## Year -0.12246 0.03252 -3.766 0.000166 ***
##
## Phi coefficients (precision model with identity link):
## Estimate Std. Error z value Pr(>|z|)
## (phi) 8.387 3.272 2.564 0.0104 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##
## Type of estimator: ML (maximum likelihood)
## Log-likelihood: 6.138 on 3 Df
## Pseudo R-squared: 0.5831
## Number of iterations: 2563 (BFGS) + 8 (Fisher scoring)

Beta regression produces evidence of a statistically signficant (p=0.012) reduction in the proportional
contribution of dunlin to the species assemblage between 1999 and present. However the trend occurred prior
to the works cmencing.

Changes in species diversity

Although the criteria used to evaluate the impact of the works aimed to ensure a comparable mix of species
abundances, the decline in relative abundance of dunlin and the increase in the relative contribution of
other species may have increased species diversity. This is generally considered to be a positive outcome for
conservation.

In order to evaluate changes in species diversity a commonly used diversity index was calculated for the
assemblage. Shannnon’s index is based on proportional contributions of each species to the assemblage.

H = −
∑N
i=1 pi ln(pi)

Where pi is the proportional abundance of each species in an assemblage consisting of N species.

Shannon’s index was calculated by transforming the table of counts into a matrix and applying the diversity
function in the R package vegan {Oksanen et al. (2018)}
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Changes in mean Shannon’s index
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