
Contents lists available at ScienceDirect

Journal of African Earth Sciences

journal homepage: www.elsevier.com/locate/jafrearsci

Past, present, and future mass extinctions

Ashraf M.T. Elewa, Ahmed A. Abdelhady∗

Geology Department, Faculty of Science, Minia University, 61519, Egypt

A R T I C L E I N F O

Keywords:
Extinction event
Mass extinction
Biotic crisis
Fossil record
Africa

A B S T R A C T

Enigmatic catastrophic events, involving mass extinction of life forms, have been recorded several times in the
Earth history. In many cases, the causes and mechanisms of these major and minor mass extinctions can be
traced via the fossil record. A synthesis of the available information is herein made on the major catastrophic
events through Earth history to understand the processes in the past and present with speculation into the future.
The selective nature of major mass extinctions from the fossil record indicates the vanishing of specific taxa and
the survival of others. The sudden extinction of organisms is almost accompanied by a gradual disappearance of
other forms, thus excluding any single cause for the killing mechanism. Consequently, the multiple causes’
scenario is the plausible mechanism responsible for the vanishing of biota through the history of the fossil
record. On the other hand, the recovery of biota after mass extinctions is also an intriguing phenomenon, in
which some groups had rapid recovery whereas others took a long time for a revival. Based on multiple pieces of
evidence from Africa, the end Permian extinction and the extinction of some Quaternary megafauna may be
related to severe drought. In addition, the current mass extinction is progressively underway; arising from
multiple causes and mainly related to anthropogenic activities, widespread diseases, as well as the possibility of
extraterrestrial impacts. Reevaluation of the magnitude of the extinction event is urgently needed to judge if
these extinctions represent natural episodic fluctuation of the biodiversity curve or unexpected catastrophe.
Analyses of invertebrate occurrence data revealed that taxa originated during stressful crises intervals have a
wider geographic range size and lower extinction rates. Moreover, species durations, geographic range, and
diversity are influencing each other. In addition, the ecological traits of a species may control their extinction
pattern and recovery speed-limit. Furthermore, the wide geographical distribution provides potentially to sur-
vive mass extinctions. Therefore, narrower geographic-range taxa are facing higher extinction risk.

1. Introduction

Mass extinctions are distinct phenomena as deduced from the fossil
record that commonly indicates events excluded a large number of
species in a short time span. The classic models such as that of Sepkoski
(1982) suggested that mass extinctions take place when there is a
sudden termination of numerous or the majority of species at a single
horizon, or within a limited stratigraphic interval. However, Bambach
et al. (2004) attributed two of the major mass extinctions (the late
Frasnian and the end Triassic) to lowered rates of origination at the
generic level rather than extinction. On the other hand, modern pa-
leobiology places alert on sampling bias, where more samples mean
finding more species (see Alroy et al., 2001; Peters, 2005; Alroy, 2008;
Alroy, 2010). Holland and Patzkowsky (2015) demonstrated that taxon
last appearance can be predicted at specific stratigraphic positions co-
incide. The difference in species duration among different taxonomic
groups is determined by many biological and ecological factors

facilitating dispersion such as mode of life and mobility level
(Abdelhady and Fürsich, 2015; Abdelhady et al., 2019a, b).

Although the Cretaceous-Paleogene (K-Pg) extinction is the most
well-known event that excluded the dinosaur community, a series of
other mass extinction events, include stronger events, were also re-
corded. The oldest known mass extinction, according to McMenamin
(1992), occurred during the middle part of the Vendian, at about
650Ma. Several authors attempted to formulate a common criterion to
interpret the different mass extinctions. Thus, Twitchett (2006) con-
cluded that understanding extinction and recovery processes in past
events, especially those associated with climate disturbance (e.g. global
warming) is essential to overcome current biodiversity threats. Models
explain the recovery process after mass extinction has attributed the lag
time between extinction and recovery phases to the increased biotic
interactions during the recovery process (Solé et al., 2010). The body
mass is the most important factor determining the upper limit of a
taxon, where small taxa dying first. However, the trophic level is also
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considered to exert significant control over the extinction. The survival/
recovery processes during the recovery phase are responsible for the
mass extinctions-induced evolutionary changes (Erwin, 1998). In recent
work, Korn et al. (2013) proposed a method to quantify and classify the
changes in morphospace across the extinction boundaries.

Despite the fact that there were repeated minor extinctions
throughout the Earth's history, five well-known major mass extinction
events have been identified from the fossil record (the big five; ac-
cording to Raup and Sepkoski, 1982). However, other minor extinction
events such as the Cambrian extinction and the Carboniferous events
can also be added to the list. Thus, in this study, evaluation is not only
focused on the well-established big five events, but also on the cata-
strophe to life during Precambrian (Ediacaran), Silurian, Carboniferous,
Middle, Permian, Middle Triassic, Early Jurassic, Cretaceous, Paleo-
gene, and Quaternary, as well as the current extinctions (see Fig. 1).
These minor extinctions were investigated by many authors in the past
decade (see Tennant et al., 2017; Wan et al., 2003; Abdelhady, 2008;
Monnet, 2009; Caruthers et al., 2013). Raup and Sepkoski (1986) have
introduced a list of ten severe biotic crises in earth history. Moreover,
Sepkoski (1986) has highlighted twenty-nine potential mass extinction
based on newly-compiled fossil marine genera. However, Twitchett
(2006) indicated that a continuous magnitude of diversity loss between
the smallest and biggest biotic crisis makes it hard to subdivide into two
separate groups.

Mass extinctions of life in earth history involve complex cata-
strophic events, where the causes and mechanisms of which remained
equivocal for a long time. Despite the existing debate between cata-
strophists, who believe in extraterrestrial impacts, and gradualists who
rely on gradual kill mechanisms, the sudden disappearance of some
organisms and the survival of others indicate a multiple causes’ sce-
nario. Moreover, our investigations indicate that the selective extinc-
tion is followed by a selective recovery of distinct taxa in most of the
studied events (Table 2), reflecting an enigmatic strategy of some of the
organisms to survive extinction. It appears that dwarfism (minimized
body size) was one of the successful adaptive strategies to survive (see
Elewa and Dakrory, 2008a). Small body size has two advantages over
the big one; the ability to hide easily from predators, and the little need
for nutrition. Other important surviving strategies include the body-
chemical composition and the dormancy of a taxon (e.g. Robertson
et al., 2013).

The mass extinction has been reviewed by several workers and
specific events have also been evaluated in several recent studies such
as Whiteside at al. (2010), Erwin et al. (2011), and Chen and Benton
(2012). Elewa (2008, a, b, c, d, e, f, g, h) introduced summaries for the
major mass extinctions in the fossil record and their causes. Herein, we
reviewed published works dealing with different causes and the impact
of major extinction events in the past and highlighting current/future
extinction events. Although the literature on the subject is much di-
versified, we limited our review to and focused primarily on the causes
and impact of these catastrophic events. Our review builds on a few
previous works (e.g., Bambach et al., 2004; Harnik et al., 2012; Hull
and Darroch, 2013).

2. Major mass extinctions

2.1. The end Ordovician

The end Ordovician (i.e. the Hirnantian) mass extinction is the
oldest of the big five events and encompassing two separate phases.
Both considered related in different ways to a strong but transitory
glaciation at the South Pole (Hammarlund et al., 2012; Harper et al.,
2014). Hammarlund et al. (2012) assigned the event to the anoxic
water dominated the continental shelves, causing the extinction in
shallower ecosystem biota, for the second pulse. According to Harper
et al. (2014), it may be related to cooling and dominated ice and sea-
level regression followed by global anoxia associated with highstand

Fig. 1. Diversity, extinction, and origination curves of Phanerozoic taxa
showing the five big mass extinctions. Curves were generated automatically in
the User Interface of the Paleobiology Database in April 2019.
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sea level in the Late Hirnantian. Harper et al. (2014) noted, based on
recent evidence, most of these factors were synchronous in the end
Ordovician mass extinction.

According to Rasmussen and Harper (2011) temperature was not
the only controlling factor for the end Ordovician mass extinction, and
the mechanism that controlled the duration and magnitude of the
sudden decrease in species diversity was the arrangement of the pa-
leoplates. Based on data compiled from Laurentia and other continents,
Adrain et al. (2000) noted that Silurian trilobite alpha diversities in all
major environments are comparable to those of the Late Cambrian and
Ordovician. These authors thus inferred a rapid recovery of trilobite
alpha diversity following the end Ordovician extinction, whereas the
global clade-level diversity remained depressed in the Silurian char-
acterized by lower levels of provinciality. In spite of the apparent crisis
that affected this extinction, the reasons have not been fully evaluated
(Elewa, 2008c). Gong et al. (2017) suggested intense volcanism in
South China during Late Ordovician based on high Hg values and Hg/
TOC ratio.

2.2. The end Devonian

A series of extinction pulses within this period caused major de-
struction to life and McGhee (1996) estimated the losses to be
13%–38% at the family level, 55%–60% losses at the genus level, and
70%–82% at the species level. There is a general consensus among
paleontologists concerning the enormity of the Late Devonian extinc-
tion, but the duration, number of events, and causes remain disputed.
Algeo et al. (1995) suggested that the Late Devonian mass extinction
occurred in the Frasnian before the appearance of first seed plants
during a period characterized by the vegetation spread in swamps not.
McGhee (1996) listed numerous major extinction events during the
Devonian but considered the Kellwasser Event as the Late Devonian
mass extinction.

Kaiho et al. (2013) believe that the Late Devonian event took place
in a stepwise manner and reached a maximum near the Frasnian–Fa-
mennian (F–F) boundary. However, Streel et al. (2000) outlined two
intervals of extended biodiversity fatalities, succeeded by two periodic
extinction events of much shorter intervals. These are the Late Frasnian
crisis pursued by the Kellwasser event, and the end Famennian crisis
tracked by the Hangeberg event. Kaiser et al. (2016) found that the
Devonian–Carboniferous boundary was marked by transgressive and
hypoxic/anoxic phase, which has been associated with a global car-
bonate crisis and disturbance in the global carbon cycle. They indicated
that the extinction patterns were similar in widely separate basins of the
western and eastern Prototethys.

2.3. The end Permian

The end Permian mass extinction is ranked the biggest among the
big five; it is considered as the largest biotic catastrophe in earth history
and hence termed by different authors as “the Great Dying”. Yet, the
effect of this crisis on land varied widely from no effect on the terres-
trial plants to complete destruction of the terrestrial ecosystems (see
Hermann et al., 2011 for references therein). Erwin (2006) noted that
about nine in ten marine animal species were lost at the Permian–-
Triassic (P–T) boundary and terrestrial ecosystems were correspond-
ingly destroyed. However, Nowak et al. (2019) and based on global
data of macro- and micro plant fossils found that the fossil record is
strongly biased and thus, there is no robust evidence for mass extinc-
tion.

Isozaki (2009) correlated the major catastrophe to the change in
geomagnetism termed as the ‘Illawarra Reversal’, reflecting a sig-
nificant change in the geodynamo in the outer core of the Earth. Ac-
cording to this author, the Illawarra reversal during the latest Guada-
lupian resulted in a series of events such as mass extinction, ocean
redox change, C and Sr isotopic excursions, sea-level drop, and plume-

related volcanism. In recent work, Kaiho and Koga (2013) assigned the
effect of the end Permian crisis on biota to the carbonate content. Thus,
organisms with high carbonate content such as corals were particularly
affected during the extinction, whereas organisms containing less car-
bonate in their skeletal structures were less affected. Villier and Korn
(2004) suggested that the end Permian mass extinction was random
with a non-selective strategy, which indicates a rapid catastrophic
event. Although some life forms rapidly recovered, the delay of re-
covery in marine invertebrates after the end Permian mass extinction
remains a mystery (Brayard et al., 2009; Stanley, 2009; Hautmann
et al., 2011). For example, Brayard et al. (2009) showed that Triassic
ammonoids began to diversify more than in the Permian only two
million years after the Permian-Triassic boundary. The latter was not
correlated to the slow recovery of other macroinvertebrates such as
gastropods and bivalves. A similar situation has been recorded by
Romano et al. (2013) on the Lower Triassic pectiniform conodont. The
recovery after environmental perturbation in the fossil record such as
intervals following mass extinctions has received more attention in
recent studies (Dineen et al., 2014). Chen et al. (2014) indicated that
the end Permian mass extinction event not only caused the biggest
crises in global biodiversity but also influenced the successive biotic
evolution. The end Permian mass extinction is receiving much attention
in the light of rapid warming and potential ocean acidification caused
by greenhouse gas emanation (Payne and Clapham, 2012) since it is
analogous to the current environmental issues faced by our planet.

2.4. The end Triassic

The Triassic-Jurassic transition witnessed the initiation of dinosaurs
(roughly 200Ma). It seems that this mass extinction opened the door to
the dinosaur world, where non-dinosaurian archosaurs and large am-
phibians became extinct leaving dinosaurs dominating the terrestrial
life. Ward (2006) regarded the Triassic as important to terrestrial ver-
tebrate life as the Cambrian was to modern life in general. On the other
hand, Elewa (2008a, d) considered the end Triassic as the smallest
among the big five events. McGhee et al. (2004) evaluated the marine
Triassic-Jurassic extinction as category “IIa”; while Lucas and Tanner
(2008) demoted it to category “IIb”, indicating that the disturbance was
of temporary nature. Zhang et al. (2018) reported, based on U-isotope
data from the lattermost Permian to the earliest Middle Triassic in Iran,
a global extent of redox conditions. They argued the late recovery of the
biota to multiple oscillations in oceanic anoxia following the latest
Permian mass extinction.

2.5. The end Cretaceous

The well-studied Cretaceous-Paleogene (K-Pg) is one of the five
major mass extinction events of Earth's history (about 65Ma ago).
Ruban (2018) proposed a classification model for the events on the
geologic records and concluded that the K-Pg represents the only
anomalous event on the Phanerozoic biodiversity curve, where other
minor mass extinctions may represent episodic events, where the
marine biodiversity has naturally fluctuated. The demise of non-avian
dinosaurs marked this terrible crisis leaving big questions on its me-
chanism and causes. The other organisms, which perished at the end of
the Cretaceous, include ammonites, several flowering plants as well as
pterosaurs. Cowen (2005) asserted that half of all living taxa became
extinct due to the severe disturbance that occurred during this major
event. Several common features, as well as differences between the K-
Pg extinction and the end Permian extinction, were listed by Vajda and
McLoughlin (2007), based on high-resolution palynofloral signatures.
Lyson et al. (2011) suggested that the non-avian dinosaur fossils gap
does not exist and thus no prior extinction has occurred. In general,
there is no clear explanation until now of the rapid recovery of many
animals and plants above the K-Pg boundary (Elewa and Joseph, 2009).
Aberhan and Kiessling (2015) analyzed many ecological traits of the
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mollusks such as life habits, level of mobility, feeding strategy, and
position on the substrate. They found significant shifts in the ecospace
utilization, where the predators and predator-resistant habits (e.g., in-
fauna, mobile, and deposit-feeding mollusks) have dominated the post
extinction assemblages.

3. Minor mass extinctions

3.1. The Precambrian (Ediacaran) extinction

The extinction of the Ediacaran biota was interpreted by Amthor
et al. (2003) to be the result of environmental disturbance, which is
comparable to Phanerozoic examples. Recently, Laflamme et al. (2013)
tested three hypotheses to explain the vanishing of the Precambrian
Ediacaran biota (mainly metazoans). These include mass extinction,
biotic replacement, and as a result of changing preservation potential.
These authors favored ecosystem engineering as the most likely cause
although the other two possibilities were not fully excluded. On the
other hand, Kataoka et al. (2014) assigned the mass extinctions of the
Late Proterozoic and Cambrian to the encounters with nebulae termed
as “Nebula Winter”, where supernova remnants and dark clouds in the
galaxy resulted in the depletion of oxygen and food scarcity as well as
anoxia in the ocean. In another speculative proposal Joseph (2010),
considered that the Earth was repeatedly assailed by gigantic rubble,
and thus, rocks that are more than 4.2 Ga were destroyed, expunging
any proof of primitive life on the surface.

In a different proposal, Lindsay et al. (2005) considered that the
abiotic organic output during Archean might be the prime cause of the
extreme difficulty in recognizing the early biospheric record. Wacey
et al. (2009) noted that improving our knowledge of the earliest fossil
record enhances our understanding of the putative biological structures
and signals which might be discovered in other planets. However, the
question of whether Phanerozoic biota evolved from Ediacaran biota
remains elusive. Many paleontologists believe in the relationships be-
tween Ediacaran biota and some of the present-day living organisms.
Other workers, however, insist on differentiating between Ediacaran
fossils and Phanerozoic biota. Brasier and Antcliffe (2004) tried to de-
code the Ediacaran mystery by studying the evolutionary development
of the frondlike organism called Charnia. Investigations on the evolu-
tion and extinction of life also focus on the debate over the Neopro-
terozoic snowball versus slushball Earth hypothesis (see Micheels and
Montenari, 2008). In an overview of the Snowball Earth events,
Maruyama and Santosh (2008) summarized the major periods when the
Earth is thought to have been frozen during the late Proterozoic. These
include the Sturtian (715–680Ma) and the Marinoan (680–635Ma)
global glaciations. They suggested that large multi-cellular animals of
the Ediacaran fauna flourished immediately after the Marinoan event,
as a prelude to the Phanerozoic world. Although several models have
been proposed for the ‘explosion’ of life during Cambrian, and the ap-
pearance and extinction of the Ediacaran world (e.g., Santosh et al.,
2014; Zhang et al., 2014 and references therein), the causes and me-
chanisms remain debated. Based on standardized quantitative data,
Darroch et al. (2015) suggested that the latest Ediacaran was char-
acterized by depauperate communities.

3.2. The Cambrian

The early Cambrian witnessed a distinct phase in evolution, when
several groups of modern life forms, from worms to fishes, appeared
(The Cambrian explosion). This radiation is shown by Shu (2008) to be
a real biological event rather than an artifact of taphonomy or in-
complete preservation of strata. Brasier (1990, 1992) referred to the
Precambrian-Cambrian boundary as it is marked by the explosive
evolution of invertebrate taxa. The biological modification of the
Earth's atmosphere has taken four billion years to be consistent for
generating and sustaining the evolution of complex life (Joseph, 2010).

The Cambrian explosion is considered by Brasier (1979) as superb
adaptive radiation leading to the emergence of a new ‘revealed life’
(Phanerozoic eon) after an eon of ‘hidden life’ (Proterozoic eon). This
explosion can be determined through exploring the original reason of
genome evolution (Li and Zhang, 2010), keeping in mind the demon-
strated link in the Neoproterozoic Earth history from the Galaxy to the
genome level (Maruyama and Santosh, 2008). Meert and Lieberman
(2008) regarded the biological changes as the main cause of the evo-
lutionary events associated with the Cambrian radiation. Kirschvink
and Raub (2003) proposed that a methane ‘fuse’ was the initiator of the
Cambrian Evolutionary Explosion. Ginsburg and Jablonka (2010) pro-
vided a combined outline where both ecological and genomic issues are
employed to interpret the enigma of the Cambrian explosion. In spite of
the dispute concerning the causes of mass extinctions, Elewa and
Joseph (2009) summarized four major extinctions during the Cambrian
era (from 540 to 510Ma), among which the fading of trilobites is the
most important event. They cited multiple causes for these mass ex-
tinctions, including predation, as well as global cooling and reductions
in sea level and oxygen leading to anoxia (according to Zhuravlev and
Wood, 1996) and changes in ocean chemistry (as proposed by Saltzman
et al., 1995).

3.3. The Silurian

In addition to the big five events, there were several minor mass
extinctions which include the Silurian mass extinctions. Calner (2008)
has evaluated three interesting events with a clear impact on marine
environments include the Early Silurian Ireviken Event, the Middle
Silurian Mulde Event, and the Late Silurian Lau Event. These three
events were proposed to have caused significant catastrophe and eco-
system changes in both deep and shallow marine realms. Bowman et al.
(2019) suggested a possible global expansion of anoxic and a paleor-
edox condition across portions of the late Silurian oceans.

3.4. The Carboniferous

One of the most important minor mass extinction events occurred
during the Serpukhovian Stage in the Carboniferous, particularly
during the late phase. Sepkoski (1996) regarded the Serpukhovian as
the seventh most important mass extinction event of the fossil record
whereas Stanley (2007) deemed it as the eighth, with a loss in biodi-
versity within the marine invertebrates of more than 26%. McGhee
et al. (2012) considered the Serpukhovian as the fifth mass extinction,
lesser than the Late Devonian mass extinction, but superior to that of
the end Ordovician (see Fig. 1 for comparison).

3.5. The Guadalupian (middle Permian)

Applying the quantitative biostratigraphic constrained optimization
method (CONOP) to the stratigraphic data of the tetrapod, a significant
extinction event was recorded in the Karoo Basin, South Africa, where
the generic richness in the mid-Permian (Guadalupian ~ 260Ma) de-
creased by more than 75% (Day et al., 2015). Based on fossils and
geochemical data on the Middle-Late Permian of Sverdrup Basin (El-
lesmere Island, Arctic Canada), Bond et al. (2015) recorded a Capita-
nian brachiopods extinction in a chert/limestone redox interval docu-
mented by redox-sensitive trace metals and pyrite, which indicate a
causal role for anoxia. They argue the latter to the smoking gun of
volcanic eruptions based on mercury concentrations.

3.6. The ladinian (Middle Triassic)

Analyzing the Northwestern Caucasus macroinvertebrate revealed
that Ladinian extinction was comparable in magnitude to other “minor”
mass extinctions events such as Early Jurassic or end-Cenomanian
(Ruban, 2017), where tetrapods, ammonoids, foraminifers, and
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brachiopods genera were significantly dropped.

3.7. The early Jurassic

The Pliensbachian–Toarcian transition (Early Jurassic) is considered
by Caruthers et al. (2013) as a global multi-phased event. They support
the Volcanic Greenhouse Scenario as the most critical factor motivating
the multi-phased extinction of the Pliensbachian–Toarcian. Raup and
Sepkoski (1984) and Sepkoski (1996) reported that about 20% of the
marine families and genera became extinct by this period. Brachiopods
were strongly affected (Ruban, 2018).

3.8. The early Cretaceous

Extensive ammonite turnover took place by the end of the
Hauterivian, which is well-documented in a corg-rich interval in the
Mediterranean Tethys. This event coincides with a drastic sea-level fall,
where large areas of the perimediterranean shelves have been exposed
and eroded. In addition, there were a series of oceanic anoxic events
during the Cretaceous (e.g. Early Aptian, Early Albian, Late Albian,
Cenomanian-Turonian, and Coniacian-Santonian; see Schlanger and
Jenkyns, 1976; Jenkyns, 1980, adding to OAE4 during the Late Cam-
panian). The second event (OAE2) is the most important mid-Cretac-
eous OAE (Kaiho et al., 2014), where about eight percent of marine
families, twenty-six genera, and 33–35% of species have been wiped
out (Sepkoski, 1989, 1996). It is estimated by Raup and Sepkoski
(1986) to represent one of the ten most severe biotic crises of Earth's
history. However, MacLeod (2005) judged two extinction events to
have occurred in the Cretaceous (an Aptian event and a Cenomanian
event). He debated the importance and recognition of the Albian event
in many paleontological datasets.

3.9. The Paleogene

Anoxia and Global warming at the Paleocene-Eocene Thermal
Maximum (PETM) have left several extinctions and ecologic changes.
Analyzing Molluscan assemblages, Ivany et al. (2018) find notable
lasting impacts on diversity and functional ecology of some important
clades, where Infauna and chemosymbiotic species increased, while
body size and abundance have been dropped in one clade as result of
hypoxic-driven selection. Similarly, Arcila and Tyler (2017) analyzed
the Tetraodontiformes fishes and detected a major mass-extinction
event during the PETM, followed by a marked increase in speciation
rates.

3.10. The Quaternary

The late Quaternary extinctions (LQE) witnessed the death of hun-
dreds of large-bodied taxa, which were mostly mammals, birds, and
reptiles (Lima-Ribeiro et al., 2014). The extinction of many megafaunal
taxa in the Late Pleistocene resulted in a diversity decrease and ex-
tinction across the entire globe Sandom et al. (2014). In addition,
surviving taxa may have also experienced in terms of genetic diversity
losses (Sandom et al., 2014; Hofreiter, 2007). This extinction was at-
tributed by Johnson et al. (2016) to direct anthropogenic impact, while
climate changes (e.g., glacial-interglacial climate) have played a minor
role. Wang et al. (2019) suggested that megafauna was negatively af-
fected by hunting and habitats destruction in Madagascar during the
middle Holocene colonization and a significant increase in population,
have caused the extinction by hunting and deforestation. Similarly,
Faith (2014) suggested that the availability and productivity of the
grassland habitats played a major role in the extinction of several large
mammal species during the Quaternary of Africa.

In general, there are two paradigms concerning the causes of these
extinctions where some scientists believe in environmental change as
principal (i.e. Graham and Lundelius, 1984; Guthrie, 1984; Graham and

Mead, 1987; Grayson and Meltzer, 2003; Nogués-Bravo et al., 2010),
and some others blame human activities (i.e. Martin, 1973, 1984;
Wesler, 1981; Miller et al., 1999; Holdaway and Jacomb, 2000; Alroy,
2001; Roberts et al., 2001; Fiedel and Haynes, 2004; Lyons et al., 2004;
Martin, 2005; Surovell et al., 2005; Haynes, 2007, 2009; Gillespie,
2008; Surovell and Waguespack, 2008). A third opinion proposes dis-
ease as a cause of this event (Edwards, 1967; MacPhee and Marx,
1997); although the various models are debated (Barnosky et al., 2004;
Koch and Barnosky, 2006; Owen-Smith, 1987). Extraterrestrial impact
at 12,900 BP has also been speculated as to the major cause (Firestone
et al., 2007).

4. Mass extinction evidences in Africa

The biogeographical imprint of mass extinctions may be uneven
among geographic regions (Kiessling and Aberhan, 2007; Vilhena et al.,
2013; Kocsis et al., 2018). Although sampling efforts are much lower in
the south comparatively to Europe and North America (Abdelhady and
Abdalla, 2018), many pieces of extinction events were recorded from
the African continent. Three main mechanisms for the mass extinctions
were reported in Africa; 1) Evidence for a plume event associated with
volcanic activity of the Karoo igneous province were recorded in north-
east and Western Africa during the Valanginian–Hauterivian (Segev,
2002; Maluski et al., 1995; Vaughan and Pankhurst, 2008), 2) Smithand
Botha-Brink (2014) have introduced a drought-induced die-offs as a
cause for the Permian-Triassic mass extinctions based on sedimentolo-
gical and taphonomic pieces of evidence in the main Karoo Basin in
South Africa, 3) The large (70–80 km diameter) Morokweng crater
(Kalahari Desert, South Africa) about 145Ma (i.e. J/K boundary 1;
McDonald et al., 2006) provide an excellent evidence for an asteroid
impact.

Kocsis et al. (2018) indicated that end Permian mass extinction
show a dramatic loss of provinciality. In contrast, the end-Cretaceous
mass extinction showed great geographical variability, where it has
clear evidence in American marine bioregions and less-characterized
effect on other Atlantic areas.

Two global anoxic events (the main Hangenberg Event and the
lower/middle Tournaisian) associated with mass extinctions were re-
corded in the eastern Anti-Atlas successions (SE Morocco; Kaiser et al.,
2011), where faunal and Sea-level changes and coincided with a gla-
ciation phase. The Cenomanian-Turonian strata in Egypt are well ex-
posed and contain diverse fauna. The stratigraphic data of the macro-
invertebrates at this interval showed an obvious pattern of selectivity of
the extinction, where the nektic organisms, which inhabited the upper
water column (e.g. ammonites) and the epifaunal bivalves (e.g. Nei-
thea, Plicatula, Inoceramus) were immune to extinction events
(Abdelhady, 2008). According to Nagm (2015), less than ten percent of
the late Cenomanian taxa were recorded in the lower Turonian strata.
Elewa (2018) argued the migration and/or local turnover of the os-
tracod assemblages in North Africa and the Middle East in the Aptian-
Turonian to cyclic environmental changes associated with the breakup
of Gondwanaland and correlated to the orbital changes (for more de-
tails on migration of ostracods as a response to environmental changes
see Elewa, 2002; Elewa, 2005c; Elewa and Mohamed, 2014, for ex-
amples on migration of organisms as a way of survival).

El-Sabbagh et al. (2004) indicated that the extinction patterns and
turnover during the K/Pg boundary was preceded by another minor
extinction interval at the Campanian-Maastrichtian in Western Sinai. In
the Tarfaya Basin of Morocco, Planktic foraminifera turnover was ac-
companied by δ13C shift and accumulation of black shales (Keller et al.,
2008). The Upper Cretaceous strata in Morocco documenting a major
mass extinction of the pterosaurs at the K-Pg boundary, where a diverse
assemblage was lived until late Maastrichtian (3 families and 7 species).
Keller et al. (1996) have examined the most complete record of the K/
Pg boundary at the stratotype section at El Kef, Tunisia found that
planktic foraminifera and calcareous nannofossils are the most affected
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groups among other invertebrates major changes across. They sug-
gested that the event was gradual and selective. In contrast, Arenillas
et al. (2000) indicated that the extinction at the Aïn Settara section took
place over a short time period reflecting catastrophic large asteroid
event. While the minor gradual decrease of some taxa can be related to
other environmental changes.

The Lower Eocene Global Stratotype Section and Point (GSSP) has
been defined by a distinct black anoxic clay bed in the Dababiya Quarry
section in southern Egypt, where a sudden shift from light gray marls to
black clay at the base of the Eocene and abrupt iridium increase
(200 ppt) associated with a decrease in foraminiferal assemblages and
δ13C occur (Schmitz et al., 2004; Alegret et al., 2005). Also, the stra-
tigraphic data of the tetrapod in the Karoo Basin (South Africa) docu-
ment the best well-known diversity loss in the mid-Permian (Guada-
lupian~ 260Ma). These strata documenting also global climate
perturbations during the Permo-Triassic mass extinctions event
Reyet al. (2016). Neritic sections in the southern shallow Tethys in
Egypt have shown long-term changes in bottom-water chemistry and
benthic foraminiferal extinction, where the benthic extinction event
took place Schmitz et al. (1996).

Elewa and Morsi (2004) concluded that the turnover of the Paleo-
cene-Early Eocene ostracods of east-central Sinai has resulted from
migration rather than origination or extinction. One of the worthy ex-
amples of adaptation towards changes in the paleoenvironmental con-
ditions (in this case water depth and salinity) is the morphological
variability and adaptability of the Egyptian Eocene ostracod species
Paracosta mokattamensis (Bassiouni). This ostracod species exemplifies
adaptability as a parallel way to migration for organisms to survive by
producing morphs capable of living in different water levels and con-
ditions (for more details and examples, see Elewa, 2005a, b). On the
other hand, the Cretaceous-Paleogene ostracods of West Africa, North
Africa, and the Middle East showed a tendency towards endemism in
the deep oceans caused by seafloor spreading as a result of the diver-
gence of the continental plates (Elewa, 2017).

Although the Holocene was characterized by rapid climatic changes
with strong droughts intervals, Wang et al. (2019) suggested that these
changes were not the killer of the megafauna in Madagascar. They
added that occurring of extinctions within stable climate intervals
suggests that human colonization and a significant increase in popu-
lation have caused the extinction by hunting and deforestation. Ter-
restrial records in Africa suggested that availability and productivity of
the grassland habitats played a major role in the extinction of several
large mammal species during the quaternary, where grazers and
grasslands taxa are the most affected species (Faith, 2014). He added
that grassland specialists were replaced by more ecologically flexible
mammal communities. Thackeray et al. (2019) reported evidence
supporting asteroid impact for the late Pleistocene extinctions during
the Younger Dryas episode.

5. Causes of mass extinctions reconsidered

As many extinction events were associated with volcanogenic
warming, anoxia, and acidification, Bond and Grasby (2017) suggested
that the temporal association of igneous provinces and extinctions im-
plies causality. They highlighted the atmospheric killers, which include
toxic metal poisoning, acid rain, O3 damage, and UV-B radiation. The
long-established classical models on the causes of mass extinctions do
not take genetic or cellular mechanisms into account (Elewa and
Joseph, 2009). Moreover, few scientists take into consideration the
extinction of the microbial life when studying the major mass extinc-
tions of the fossil record (e.g. Hoffman et al., 1998; Nagy et al., 2009).
Therefore, Elewa and Joseph (2009) stated that the extinction of the
Paleoproterozoic should be listed with the major extinction events.

The drivers of extinction events may be identified from the se-
lectivity patterns (Finnegan et al., 2015). In a recent study, Hull et al.
(2015) introduced new insights related to the dynamics of mass ex-
tinction through mass rarity to provide the most robust measure of our
current biodiversity crisis relative to the past. In general, there are re-
peated causes that have played important roles in the species extinction
events (Table 1). According to Elewa and Joseph (2009), these include
global warming (McAnena et al., 2013), major glaciation (Sheehan,
2001; Bornemann et al., 2008; Matthew, 2009), fluctuations in sea
level, global anoxia (Abbas et al., 2000; Shen, 2008; Castle and
Rodgers, 2009), volcanic eruptions (Courtillot, 1999; MacLeod, 2000,
2001), asteroid, comet, and meteor impacts (Alvarez et al., 1980;
Firestone, 2009), plate tectonics (MacLeod, 2000, 2001), gamma rays
(Melott and Thomas, 2009), and disease (Poinar and Poinar, 2008).
Another example that may lead to the extinction of a definite group is
predation (Reyment, and Elewa, 2002b; Elewa, 2007a, b, c, d). Adding
to the preceding causes, Herbert (1992) and Mitchell et al. (2008) at-
tributed the extinctions to the variations of the Earth's orbit, which
cause cooling phases within warm conditions. Other hypotheses pro-
posed include oceanic overturn (Wilde and Berry, 1984), tectonic fac-
tors leading to volcanism and sea-level fall (MacLeod, 2000, 2001),
clathrate gun (Hecht, 2002), severe drought (Smith and Botha-Brink,
2014), hydrogen sulfide emissions from the seas (Kump et al., 2005), as
well as a nearby nova, supernova or gamma-ray burst (Melott and
Thomas, 2009).

Wei et al. (2014) attempted to evaluate the relationship between
geomagnetic reversals and mass extinction. Their model is based on the
proposal that accumulated oxygen will escape during an interval of
increased reversal rate, leading to the dysoxia, which cause the mass
extinction. Thereafter, Long et al. (2016) reported that Se depletion in
the past oceans correlates with three major mass extinction events (e.g.,
the end Ordovician, end Devonian and end Triassic).

Hallam and Wignall (1999) elaborated Newell (1967) opinion and
suggested that the majority of marine mass extinctions coincide with
large eustatic inflections. Nonetheless, the work of Alvarez et al. (1980)
on the K-Pg boundary highlighted the bolide impact hypothesis.
Wignall (2001) countered the suggestion of Courtillot (1999) on the

Table 1
Possible causes of the important extinction events of the fossil record. XXX donates> 10 references; XX donates> 5, X donates< 5; and – donates 0 references.

Causes Event Asteroid
impact

Volcanism Anoxia/
euxinia

Sea level
change

Glaciation/Global
cooling

Supernova/Orbital
change

Plate
tectonic

Disease Human drought

Precambrian - X X - X X - - - -
Cambrian - - X X XX - - - - -
End Ordovician - X XX - XXX X X - - -
Late Devonian X X XX X XX - - - - -
End Permian - XXX X XX X X XX - - X
End Triassic X X - X X - X - - -
Cretaceous - - X - - X - - - -
K-Pg XXX X - - - X - X - -
Quaternary X X - - X - - X XX X
Current X - - - - - - X XXX X
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perfect correlation between the age of flood basalt provinces and mass
extinction. He believes the correlation exists but is imperfect, where
only six of the major extinctions of the Phanerozoic coincide with major
episodes of volcanicity. Seemingly, the multiple causes' scenario is the
most convincing and acceptable hypothesis of mass extinctions to sev-
eral scientists (see Molina et al., 1996; Twitchett, 2006; Elewa, 2008e;
Elewa and Dakrory, 2008a, b; Elewa, 2014).

Darroch et al. (2015) argued the Ediacaran extinction, which is the
first mass extinction of complex life, to innovative ecosystem changes
and biological interactions. Laflamme et al. (2013) proposed that
multiple causes including behavioral innovations together with the
beginning of predation and ecosystem-wide changes, and the substitu-
tion of rigid, microbially-bound substrates by ventilated mixed grounds,
led to the first large-scale extinction of macroscopic life. Kataoka et al.
(2014) speculated that the late Neoproterozoic snowball Earth and the
Cambrian explosion were possibly driven by a starburst, which took
place around 600Ma in the Milky Way Galaxy. Kirschvink (1992) ar-
gued the event to the raising planetary albedo. Extreme glaciation
eventually affected the Neoproterozoic (e.g. Hambrey and Harland,
1985; Young and Gostin, 1989; Hoffman et al., 1998; Evans, 2000;
Pazos et al., 2008). However, Micheels and Montenari (2008) suggested
a moderate scenario of a slushball Earth instead of an extreme snowball
hypothesis.

Among big five from oldest to youngest, the latest Ordovician mass
extinction is well known to coincide with oxygenation episode in the
Hirnantian Stage. Twitchett (2006) argued the first phase of the ex-
tinction event in the Late Ordovician to rapid global cooling. According
to him, all major extinctions have resulted from climate changes asso-
ciated with volcanism, while he minimizes the possible effect of an
extraterrestrial cause.

The Late Devonian marine mass extinction, which is considered as
one of the major crises of the fossil record, is linked to two Kellwasser
simultaneous anoxic events, which have in turn been linked to changes
in continental weathering, volcanic/hydrothermal fluxes, sea level and
climate change (John et al., 2010). A link between marine anoxia as-
sociated with transgression and mass extinction in the Devonian was
earlier suggested (see Johnson et al., 1985) the Late Devonian. More-
over, a global glaciation might be generated by a bolide impact (see
Prothero, 1998; Joachimski and Buggisch, 2000, 2002). Kaiho et al.
(2013) presumed a link between forest fire and soil erosion and the Late
Devonian mass extinction. Marynowski and Racki (2014) argued
against the proposal of Kaiho et al. (2013).

In their comparison of the causes of the end Permian mass extinc-
tion and those of the Cretaceous-Paleogene mass extinction, Vajda and
McLoughlin (2007) noticed that the extended extinction-recovery suc-
cession at the Permian–Triassic boundary does not fit with an instant

causal mechanism such as an extraterrestrial body impact, but is well-
matched with hypotheses related to extended environmental pertur-
bations through flood-basalt volcanism and release of methane from
continental shelf sediments. Meyer et al. (2011) supported the idea of
euxinia as an explanation of the delayed biotic recovery during Early
Triassic time. Winguth and Winguth (2012) attributed the end Permian
extinction event to periodic anoxia evidenced by the orbital variability
in the sedimentary record. Song et al. (2012) recorded the phenomenon
of intense ocean anoxia, which is coincident with the end Permian mass
extinction, through examining material of conodont albid crown apa-
tite.

Hermann et al. (2011) assumed that recurrent patterns observed at
the Permian-Triassic boundary suggest a common cause such as mas-
sive ejections of volcanic gases. Brand et al. (2012) concluded that
Permian-Triassic mass extinction was the result of higher volcanic CO2
and CH4. Cui and Kump (2014) accepted global warming as a cause of
the end Permian extinction event. The formation of Pangaea is another
possible cause of this major event. Schobben et al. (2014) attributed the
end Permian mass extinction event to multiple causes include global
warming, intensified hydrological cycle, water column stagnation, eu-
trophication, and anoxia). Retallack et al. (2011) mentioned that the
end Permian mass extinction was followed by unusually prolonged
recovery.

Garbelli et al. (2015) indicated that global warming was an im-
portant factor in the biotic crisis for terrestrial and marine taxa of the
late Paleozoic world through. Isozaki (2009) stated that the secular
change in cosmic radiation can explain the global climatic changes that
led to the end-Guadalupian extinction and the long-term global
warming/cooling trend. Acidification has played an important role, as
well, in the Permian-Triassic mass extinction (Clarkson et al., 2005). Liu
et al. (2017), related the end-Permian extinction to massive volcanic
eruptions based on direct geochemical evidence (e.g., Zinc isotope),
which is an important micronutrient of marine phytoplankton.

The transition from the Triassic to Jurassic period (TJP; approxi-
mately 200Ma) is called “the age of the dinosaurs”. This period is
known to encompass the end Triassic mass extinction. The causes of this
major event, according to Deenen et al. (2010), are volcanism and as-
sociated greenhouse gases that paved the way for the dinosaurs to be-
come the dominant species on Earth. Although McGhee et al. (2004)
evaluated, as mentioned in a previous section, the marine Triassic-
Jurassic extinction as category “IIa”, Lucas and Tanner (2008) down-
graded the TJB marine extinction to category IIb in their classification.
They mentioned different causes of this event including physical pro-
cesses, significant excursion in the carbon isotope composition of or-
ganic matter, the initiation of the Central Atlantic Magmatic Province
(CAMP) eruptions, fluorine and chlorine volatile emissions during the

Table 2
A matrix representing the important mass extinctions of the fossil record in relation to their causes.

Extinction event (older to
younger)

% Extinction/
Origination

Loss % (Benton,
2003)

Cause(s) Mechanism(s) Extinction selectivity Recovery
selectivity

Distinct extinct
organisms

Precambrian - 3, 5, 6 Debatable ? ? Microbes
Cambrian - 3, 4, 5 Debatable Selective Selective -
*End Ordovician 81 27% F; 57% G 2, 3, 4, 5,

6, 8
Debatable Selective Selective Nautiloids

*Late Devonian 61 19% F; 50% G 1, 2, 3, 4, 5 Debatable Selective Selective Armoured fish
*End Permian 91 57% F; 83% G 2, 3, 4, 5,

7, 8
Debatable Selective/

nonselective
Selective Trilobites and insects

*End Triassic 77 23% F; 48% G 1, 2, 4, 5, 8 Debatable Selective Selective Large amphibians
Cretaceous 74 - 3, 7 Debatable ? ? -
*K-Pg 17% F; 50% G 1, 2, 6, 7, 9 Debatable Selective Selective Dinosaurs and

ammonites
Quaternary - 1, 5, 9, 10 Debatable Selective Selective Mammoths
Current - 1, 9, 10 Debatable Selective - Human?

* = The big five mass extinctions. 1 = Asteroid impact; 2 = Volcanism; 3 = Anoxia/euxinia; 4 = Sea level change; 5 = Glaciation/global cooling; 6 = Supernova/
Gamma rays; 7 = Orbital change; 8 = Plate tectonic; 9 = Disease; 10 = Human. F = Families; G = Genera.
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CAMP eruptions, and the effects of dramatic temperature fluctuations.
Alternatively, the asteroid impacts which may have contributed to the
breaking up of the Pangaea supercontinent is a possible cause of the end
Triassic mass extinction (Joseph, 2000). Another assumption is the
depletion of oxygen levels and increased anoxia (Ward et al., 2004) and
dinosaurs survived this mass extinction because they developed re-
spiratory systems far more proficient than other terrestrial species
(Ward, 2006).

Raup (1992) noted that up to 85% of all species were nearly de-
stroyed through the Cretaceous-Paleogene mass extinction. Since
Alvarez et al. (1980) introduced the assumption of asteroid impact as a
cause for the K-Pg extinction, several scientists tried to prove this
theory through diversified studies (Thierstein, 1982; Smith et al., 1992;
Molina et al., 1998). In an explanation of what was probably happened
during the deposition of the K-Pg boundary layer, Goldin (2008, 2012)
presented a new evaluation of the hypotheses for global wildfires and
thermal destruction of the terrestrial biosphere following Chicxulub.
Her results lie in two points; the first indicates that the deposition of
Chicxulub ejecta spherules which formed the global K-Pg boundary
layer did not occur as drops falling separately at their terminal velo-
cities, but fell jointly as straight down concentrated currents under
gravity; and the second demonstrates the limited pulse of thermal ra-
diation reaching the surface of the atmosphere in both magnitude and
duration as a result of absorption by spherules settling lower in the
atmosphere. Keller et al. (2018) indicated that rapid warming and
ocean acidification are directly linked to Deccan volcanism and the end
Cretaceous mass extinction. They added that Anthropocene's dioxide
input and environmental changes are faster than that of the end Cre-
taceous (12–16%).

On the other hand, some others excluded the asteroid impact as a
single cause and relied on volcanic eruptions (see Li and Keller, 1998a,
b, c). A third team preferred multiple causes’ scenario (extraterrestrial
bolide impact, volcanic eruptions, and climatic and environmental
changes; see Elewa and Dakrory, 2008b; Arens and West, 2008). Poinar
and Poinar (2008) proposed disease as a direct cause for the vanishing
of dinosaurs. Punekar et al. (2016) suggested that Gigatons of carbon
and silicon oxides have been introduced into the atmosphere, which
was responsible for the carbonate crisis in the oceans and has resulted
in several stressors in the marine realm causing the end Cretaceous
mass extinction.

6. Selective vs. nonselective hypotheses

The heterogeneous of the biota (i.e. bioecological traits such as life-
habit, feeding mode, mobility, etc.) may hide some extinction events.
Testing the association between extinction threat and ecological traits
using a database of 2497 marine vertebrate and molluscan genera,
Payne et al. (2016) found a difference between modern and past ex-
tinction events, where modern extinction threatening large body size,
while past extinction events were either nonselective or preferentially
excluded smaller-bodied taxa. They added that pelagic animals were
suffered more than benthic ones during previous mass extinctions but
are not preferentially threatened in the modern ocean (for examples see
Reyment, and Elewa, 2002a; Elewa, 2004; to see examples on the
ability of benthic ostracods to adapt with the change in the environ-
mental conditions through producing polymorphs).

Many scientists confirm the survival of eukaryotes after the snow-
ball events. Accordingly, Hoffman and Schrag (2002) mentioned that
refugia would have existed and their relative isolation and selective
stresses could have contributed to their evolutionary diversification.
Therefore, they considered the snowball events as an environmental
filter on the evolution of life, and a biogeochemical pump that per-
manently changed the environment itself. On the other hand, selectivity
might have occurred in the extinction and recovery phases during the
end Ordovician events (Harper and Rong, 2008; Harper et al., 2014).
Hammarlund et al. (2012) regarded the two discrete pulses of the end

Ordovician extinction as the first selectively affected nektonic and
planktonic species, whereas the second was less selective. Korn et al.
(2013) concluded that ammonoids demonstrate the similarity of the
Devonian events (selective extinctions) but show a striking difference
from the end Permian event (nonselective extinction). Kaiho et al.
(2013) linked forest fire and soil erosion to the Late Devonian mass
extinction with the highly selective decimation of shallow-water se-
dentary organisms. Lerosey-Aubril and Feist (2003) recorded implica-
tions for the selectivity of survivorship of trilobites during the Late
Devonian crisis.

Selective nature of the end Permian mass extinction has been ad-
dressed by different authors (e.g. Bambach et al., 2002; Knoll et al.,
2007; Dineen et al., 2014; Schobben et al., 2014). Song et al. (2011)
assumed selective extinction of larger foraminifers at the end Permian
mass extinction and consider them as the greatest victims of the event
among the Permian foraminifer assemblages. A selective extinction of
heavily calcified marine organisms has been reported for the end Per-
mian event (Clapham and Payne, 2011 in Cui et al., 2013). Villier and
Korn (2004) accounted for a high level of selective extinction of am-
monoids at the end of the Capitanian and a nonselective extinction at
the end of the Permian. Ruta et al. (2011) noticed particular selective
survival of therapsids and diapsids of parareptiles after the end Permian
mass extinction. Shen et al. (2010) presumed selective diversification of
some surviving fossil groups after the end Permian mass extinction.

Brayard et al. (2009) detailed the extinction selectivity and patterns
of recovery of the Triassic ammonoids. As to the K-Pg extinction event,
a clear separation (selectivity) in the extinction rate is noticed by
Schulte et al. (2010) between phytoplankton groups with calcareous
shells and organic/siliceous shells. Feduccia (2014) deduced probable
selective extinctions of the biota that suffered the K-Pg extinction event.
Extinction selectivity was addressed by Wilson (2013) in the body size
of mammals across the K-Pg boundary of northeastern Montana, USA.
In general, less attention has been paid to the post-K-Pg biotic recovery
as compared to the extinction event itself (Erwin, 1998). Robertson
et al. (2013) recorded the role of dormancy in marine taxa as a selective
recovery factor after the K-Pg extinction crisis. Lima-Ribeiro et al.
(2014) noted selective extinction of large-bodied mammals of the late
Quaternary.

A similar conclusion has been previously presented by Lyons et al.
(2004), Brook and Bowman (2005), and Braje and Erlandson (2013).
Wroe et al. (2004) proposed selective extinctions of large animals by
human hunting and predation in the late Quaternary. Barnosky et al.
(2011) emphasized the need to explore the relationship between ex-
tinction selectivity and extinction intensity. In conclusion, the common
recorded selective extinctions exclude the hypotheses relying on the
possibility of extraterrestrial bolide impacts to be a single cause of mass
extinctions of the fossil record, although this could have served as one
of the effective factors that led to these events. Alternatively, the re-
corded nonselective extinctions indicate that abrupt global destructions
might have occurred.

Variable reasons may be influencing the species duration (i.e.
longevity). Understanding these reasons is essential for conservation
biology. Based on occurrence data in the Paleobiology Database,
longevity, geographic range size, and diversity show a cyclic complex
pattern, in which there is no compelling evidence that one variable
determines the others more or less than do any variable (see Abdelhady
et al., 2019b, Fig. 2). The linear regression model indicates a circular
dependency among genus duration (longevity), geographic distribution
(range size), and diversity (expressed by genus richness). Fig. 2 shows a
positive correlation between every two pairs of the three measures.
Generally, the correlation remains highly significant (high values of
Pearson's correlation, r between 0.62 and 0.67). These results are in
accordance with the previously documented correlation between range
and duration in many groups that have been studied. Although Kreft
and Jetz (2010) found that range size or geographic distribution has no
effect on the species richness and only minority of the wide-range taxa
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dominated a diverse community (only 20%), which in turn limiting the
role of distribution on the total diversity pattern, a strong positive
correlation between range size and diversity for the Phanerozoic was
indicated (see Fig. 2).

Theoretically, genera with long duration have higher potential to be
collected, than those of short duration; however, Ruban (2012) found
that older brachiopod superfamilies had more chances to be extinct
during four of the five major mass extinction, which may tolerate the
sampling potentiality. Consequently, both longevity and range size may
be derived by other factors rather than diversity. Based on standardized
data sets of more than fifty-thousand taxonomic occurrences from the
Paleobiology Database, Nürnberg and Aberhan (2013) found that mean
values of extinction and speciation rates are significantly lower for
broadly adapted genera than narrowly doing adapted ones.

Miller and Foote (2003) analyzed the longevities of marine taxa
originated throughout the Phanerozoic and found that marine taxa
originated during recoveries from mass extinctions have a wider geo-
graphic range than those originating at stable times. In addition, they
recognized a correlation between the geographic range-sizes and spe-
cies duration of marine taxa. Simpson and Harnik (2009) indicated an
important role for the abundance in the extinction pattern of the marine
bivalves in the Mesozoic and Cenozoic. It is also possible that living in a
diverse community may facilitate the development of adaptation to
overcome extinction.

Krug and Jablonski (2012) suggested that origination during major
extinction events provide longer stratigraphic durations relatively to
genera originated at normal stable intervals. In addition, taxa origi-
nated under stress such as global crises event have longer geographic
ranges (Miller and Foote, 2003; Ros et al., 2011; Abdelhady and
Abdalla, 2018). To test these hypotheses, the range of the bivalve taxa
at the five major earth crises, namely the end Ordovician, end Devo-
nian, end Permian and the end-Cretaceous were analyzed. Spatial and
temporal ranges of the taxa (which represent the geographic distribu-
tion and Longevity of the taxa) originated at the crises interval are
much wider than those originated whenever (i.e. normal or stable
conditions; Table 3). During and soon after environmental crises new
taxa originate and start gradually to fill out the spaces of the extinct
ones. Origination under an unstable environment may govern the
ecological characteristics of the newly evolved taxa. According to
community succession models, the first taxa occupied niche tends to be
‘opportunistic’. These opportunistic taxa make the environmental suit-
ability for the coming animals, which are mainly ‘equilibrium’ taxa and
thus may be more eurytopic (see also Levinton, 1970; Abdelhady and
Fürsich, 2014).

Fig. 2. Linear regression model and relationship between (A) Longevity and
genus richness, r= 0.63. (B) Longevity and geographic range size, r= 0 0.67.
(C) Diversity and range size, r= 0.62.

Table 3
Comparing average and maximum duration and range size of the bivalve ori-
ginated at environmental crises (5-Major mass extinction events) to those ori-
ginated during normal conditions. Genera originated at crises interval have
wider range size and longer durations. The occurrence and range data of the
major invertebrates including bivalves, cephalopods, gastropods, and brachio-
pods were downloaded in December 2016 from Paleobiology Database (http://
paleobiodb.org/#/).

Stage Crisis event Stage
top
(MY)

Average
duration
(longevity)
(MY)

Maximum
duration
(longevity)
(MY)

Maximum
range size
(lat.
degree)

Maastrichtian Cretaceous 66 8.69 63.41 144.89
Danian 61.6 1.78 5.60 106.79
Rhaetian Triassic 201.3 24.38 135.30 145.01
Toarcian 174.1 7.43 29.10 139.89
Changhsingian Permian 252.17 12.77 50.87 147.86
Olenekian 247.2 6.65 12.20 131.55
Famennian Devonian 358.9 55.85 157.60 74.94
Tournaisian 346.7 15.80 15.80 1.00
Hirnantian Ordovician 443.4 12.14 24.20 89.27
Telychian 433.4 8.57 14.20 122.43
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Examining the Triassic macroinvertebrates revealed that extinction
rates of the Early Triassic were very low and rates increase with in-
creasing environmental stability at the Middle and Late Triassic (Fig. 3).
Thus, taxa originated at crises intervals have a wider range size
(Table 3) and lower extinction rates (Fig. 3). Hence, geographic range
size, the result of ecophysiology, plays a major role in determining
extinction risk.

Roopnarine and Angielczyk (2015) examined the Permian-Triassic
communities in South Africa and found that functional diversity re-
gardless of species richness is an important stability factor. The di-
versity-stability relationship has been indicated previously (i.e., ‘more
complex ecological systems are more stable’; for details see Abdelhady
and Fürsich, 2014; Abdelhady and Mohamed, 2017). Based on evidence
from multiple ecosystems at a variety of temporal and spatial scales,
Tilman et al. (2006) suggested that biological diversity acts to stabilize
ecosystem functioning in the face of environmental fluctuation.

7. Recovery from mass extinction

As the world faces an ongoing extinction crisis, which includes but
not limited to climate change, habitat destruction, biodiversity loss.
Past recovery from mass extinctions provides a basic idea for modern
ongoing extinction (Clarkson et al., 2016; Zhang et al., 2017). Mass
extinctions in the fossil record are followed by prolonged intervals of
ecological instability due to the destruction of the biosphere –geosphere
interactions (Hull, 2015). According to Erwin (2001), the ecospace
collapse during mass extinctions needs to be rebuilt during the recovery
phase. However, if the extinction catastrophe is rapid, recovery will
begin faster, while continued deteriorations will give the chance for
some groups to radiate and diversify while others may still be suffering
extinctions (Budd and Johnson, 1999).

Analyzing range data from the fossil record and found that re-
gardless of the magnitude of the extinction peak, there are 10 million
years lag before the origination reaches the same peak, which is known
as the speed limit (Clarkson et al., 2016). The latter may be related to
environmental factors. Anoxic and related toxics are the main reasons
for both extinction and prolonged recovery episodes (Clarkson et al.,
2016). Thibodeau et al. (2016) found that significant biotic recovery
started only after the eruption of the Central Atlantic Magmatic Pro-
vince ceased.

Examining recovery from the end Permian mass extinction, Grasby
et al. (2016) based on stable isotope data suggested a greenhouse world
and reduced marine productivity during the Early Triassic have created
an Early Triassic nutrient gap. These persistent environmental pertur-
bations may be responsible for the delayed recovery (Foster et al.,
2017). Similarly, Zhang et al. (2017) indicated that the intrusion of the
sulfide-rich waters on the shallower marine ecosystem may be re-
sponsible for both mass extinction and delayed recovery. The latter may
highlight the present-day challenges (i.e. global warming and eu-
trophication of modern continental shelves). Away from the marine
realm, Donovan et al. (2016) and based on well-dated macrofossil
spanning the Maastrichtian-Danian found that the total diversity of the
insect damage decreased from the Cretaceous to the Paleocene, where
the recovery to pre-extinction levels occurred within 4Ma.

Schueth et al. (2015) suggested a large-scale geographic hetero-
geneity in both extinction and recovery of the end Cretaceous crises.
Examining the (Griesbachian) microbialite unit on the Great Bank of
Guizhou in South China, Foster et al. (2018) stated that the benthic
community such as brachiopods, crinoids, echinoids, bivalves, gastro-
pods, microconchids, and ostracods are more diverse relative to other
coeval deposits, where there are no temporal trends in any diversity
index or body size during the recovery phase. They added that the
dominance of the small body-sizes and opportunistic taxa point to a
high-stress environment (Abdelhady and Fürsich, 2014). Urbanek
(1993) studied the Upper Silurian graptoloids and stated that post-

Fig. 3. Extinction rates (boundary crosser method; Foote, 2000) of the Triassic
macroinvertebrate during the Early, Middle, and Late Triassic.

Table 4
Important ecological traits of the bivalves survived the end Permian and end
Cretaceous mass extinction events.

Autecology End Permian End Cretaceous

Shell composition% Aragonite 55 70
Calcite 45 30

Life habit% Epifauna 52 51
Infauna 48 49

Feeding mode (Diet) % Deposit-feeders 15 10
Suspension-feeders 85 90

Mobility % Mobile 49 51
Stationary 51 49

Fig. 4. Mechanisms of the major mass extinction events in earth history.
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extinctions taxa are usually dwarfed (small-size) in comparison to pre-
extinction ones (Lilliput Effect; see also Elewa, 2018). Elewa and
Dakrory (2008a) noticed the Lilliputian planktonic foraminiferal as-
semblages of the K-Pg boundary of the North African Plate. The dom-
inance of the small-body taxa was also highlighted again (see Sallan and
Galimberti, 2015). Therefore, the latter authors based suggested a si-
milar pattern for the current extinction (i.e. loss of large-bodied taxa).
Although our expectations are the slower recovery rates near the crater,
Lowery et al. (2018) found that proximity to the impact has no sig-
nificant effect on the recovery. They found that in nearby areas many
fauna has reappeared just years after the impact, where within 30 kyr, a
high-productivity ecosystem has been established.

In addition to the environmental stress, Schueth et al. (2015) in-
dicated that competition between newly-appeared and survivors taxa
may be an important factor controlling the K/Pg recovery of nanno-
plankton. According to Krug and Jablonski (2012), both species rich-
ness and geographic range expand rapidly in the recovery stage than
before extinction. They argued the higher origination rates of post-Pa-
leozoic times to the past recovery from a mass extinction event. Based
on stratigraphic range data of the marine bivalves, they added that
origination rates are constant throughout the Phanerozoic and shifted
only during the major biotic crises. Based on Erwin (2001) and
Hofmann et al. (2013), three main phases following the extinction
event can be distinguished. The first is a lag interval with no significant
increase in alpha diversity, where the duration of this lag phase may be
extended (e.g., end Permian; Erwin, 2001) or absent. The lag interval
followed by a recovery interval, on which competition within habitats
increases (i.e. alpha diversity). Finally, when alpha diversity reaches a
critical threshold (habitat saturation of species), beta diversity (habitat
heterogeneity) starts to increase.

Herein, testing if ecological traits such as life habit (i.e., infaunal vs.
epifaunal), diet (suspension vs. deposit feeders), shell composition
(aragonite vs. calcite), substrate type (clastics vs. carbonate), and lo-
comotion (stationary vs. mobile) influencing the species duration in the
Phanerozoic bivalves (Abdelhady and Abdalla, 2018; https://doi.org/
10.1594/PANGAEA.854072), revealed some significant variation, oc-
casionally between deposit and suspension feeders (Table 4). In addi-
tion, we have tested whether wide geographical distribution provides
potentially to survive mass extinctions, and we found a significant
variation among the average duration of narrow and wide range sizes
(66 and 230Ma).

7.1. Current mass extinction is underway

Many scientists believe that our planet is moving towards witnes-
sing the sixth mass extinction (e.g. Wilcove et al., 1998; Crutzen and
Stoermer, 2000; Steffen et al., 2007; Elewa, 2008b, e; Elewa and
Joseph, 2009). Some scholars alerted that man is accelerating the
current mass extinction (i.e. the sixth mass extinction) through various
anthropogenic activities (Elewa, 2008e; Andryszewski, 2008; Elewa
and Joseph, 2009; Braje and Erlandson, 2013; Elewa, 2014). Some
workers speculate asteroid impact as one of the possible leading causes
of the earliest phases of the expected sixth mass extinction (Chyba et al.,
1993; Firestone et al., 2007). Braje and Erlandson (2013) argued that
late Pleistocene and Holocene extinction can be seen as part of a single
complex continuum progressively more motivated by anthropogenic
factors that continue today. They view the current extinction event as
having multiple causes, with humans playing an increasing role
through time. It is one of the serious problems to underestimate the
major events, as Barnosky et al. (2011) confirmed that the current ex-
tinction rate is higher than our expectations based on data from the
fossil record, which required enhanced and intensive efforts for con-
serving current biota.

Stanley (2016) argued the species rarity (reduction in geographic
ranges and/or population sizes) to humans through wholesale, through
modification of terrestrial habitats, appropriation of primary

productivity for humanity, overexploitation, and pollution, among
other factors. Ceballos et al. (2015) showed that the average rate of
species loss of vertebrate animals in the last century is100 times higher
than the background rate, which indicates that a sixth mass extinction
is already underway. The latter is accompanied by a decrease in po-
pulation size (> 40%) and a range of many animals, occasionally
mammals, (up to 80% shrinking geographic range; see Ceballos et al.,
2017). The need to pay much attention to conservational biology and
reconciliation ecology has been emphasized (Rosenzweig, 2005).
However, the intrinsic risk may provide a baseline for highlighting
potential threats to marine biodiversity (Finnegan et al., 2015). An-
thropogenic-induced environment changes have threatened biodi-
versity and induced evolutionary changes (see Díaz et al., 2006; Mora
and Sale, 2011; Abdelhady, 2016; Abdelhady et al., 2018, 2019a).

8. Conclusions

The current synthesis leads to the following salient conclusions.

• Mass extinctions of the fossil record have distinct origins, mechan-
isms, and causes.

• Minor mass extinctions should be reconsidered, in which some
should be ranked as major events (e.g. the Ediacaran extinction).

• The ‘multiple causes’ scenario is the plausible mechanism for mass
extinction events, where geomagnetic reversals, volcanic activity,
and asteroid impact all will be followed by anoxic episodes (see also,
Wei et al., 2014). Moreover, transgression will be accompanied by
marine anoxia (Johnson et al., 1985). Furthermore, a global gla-
ciation might be generated by bolide impact (see Prothero, 1998;
Joachimski and Buggisch, 2000, 2002, Fig. 4)

• Taxa range, duration, and diversity can be correlated but there is no
compelling evidence that one variable determines the others more
or less than do any variable.

• Taxa originated at crises intervals have a wider range size and lower
extinction rates.

• The ecological traits of a species may control their extinction pattern
and recovery speed-limit.

• The wide geographical distribution provides potentially to survive
mass extinctions.

• Current mass extinction is underway through anthropogenic activ-
ities, widespread diseases, and the possibility of extraterrestrial
bolide impacts.
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