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Cybernetics

Cybernetics has many definitions. Loosely speaking 
it concerns the study of self regulating systems

Key concepts

● Homeostasis
● Feedback loops
● Self regulation



  

System dynamics

Cybernetic theory is also known as “system 
dynamics”

Jay W Forrester (MIT) formalised many of the 
concepts

Feedback loops

Compartment – flow modelling

Dynamic equilibrium

External and internal forcing



  

Homeostasis

The tendency of a system to return to some 
particular state

Simple example. A room with a thermostat 
controlling the central heating



  

Complex system dynamics models

Club of Rome “World Model” 

First attempt to use system dynamics to model a 
virtual world

Modelled the human-biological-resource-
pollution system as a system of equations

Used in the “Limits to growth” report (1972)

Influenced policy makers to take more of a 
“whole system” approach to global issues



  

World model in Vensim



  

Run the model yourself

The model is included as example with VensimPLE (free Personal 
Learning Edition)

Multiple positive feedback loops that may lead to undesirable and 
unsustainable pressure on global system

 

Widely criticised by economists as unrealistic, but influenced conservation 
thinking.

An analysis of the model is available as a video on this page

https://vensim.com/model-analysis-world-dynamics/



  

Simpler starting point

Population modelling

Basis of all ecology

What controls and regulates population growth 
and size?

How can humans exploit populations of 
animals and plants sustainably?



  

What can go wrong?

Human activities influence almost all natural 
populations

When we do not understand population dynamics 
we may observe unwanted

Extinction
Invasion and over population
Non sustainable use
Population imbalances (boom and bust)



  

How do we study populations?

Visible populations of conservation concern are 
continuously monitored.
For example, Wildebeest numbers in the Serengeti



  

How do we study populations?

Populations change through births, deaths and 
migration



  

How do we study populations?

Births deaths and migration are known quantities for 
some populations



  

How do we study populations?

.The populations of most organisms cannot be 
precisely monitored
We usually have to infer population size and 
produce indirect estimates.
We also frequently need to make projections 
regarding population dynamics.

Mathematical modelling allows us to …..
1. Estimate unmeasurable population parameters
2. Predict population change over time
3. Understand processes responsible for change



  

Types of models

.1) Aggregated population models using differential 
equations – make simple assumptions regarding 
births and deaths.
2) Disaggregated models (matrix models) - take into 
account population structure
3) Individual (agent) based models -take into 
account variability at the level of single organisms
4) Spatially explicit models – take into account 
effects of habitat patch size and connectivity
5) More complex simulation models  - take into 
account interactions at the community level



  

Aggregated population model



  

Differential equation

“The population size is the integrated result of births, deaths and migration
 with respect to to time” 

=



  

Ignoring migration

“The population size is the integrated result of births minus deaths 
 with respect to to time” 

=



  

Population stability

.A population can only be stable if births exactly 
equal deaths.

This is highly unlikely.

In reality all populations undergo natural fluctuations 
in size

We therefore attempt to model and understand 
population dynamics



  

Building a simple model

.Let's first assume that a population (call them 
rabbits) consisting of 100 individuals has a fixed 
number of births each year (let's say 100).

Let's set a fixed number of deaths (say 90)

So after one year              = 100 + 100 -90 = 110



  

Building a simple model

.What happens if this continues year after year?



  

Building a simple model

.What happens if number of deaths always are 
greater than births?
            

= 89 -90



  

Building a simple model

.This is NOT a suitable model!

Births and deaths cannot be a constant number!

We need (at least) to think about birth and death 
rates.



  

What does this imply?

.Stability only occurs when r = 0

If is positive we get exponential growth.



  

Exponential growth

.

Positive feedback



  

Exponential growth

.

Positive feedback



  

How do we avoid exponential 
growth?

We need to include some measure of the 
carrying capacity in our mathematical model.

As the population approaches the carrying 
capacity growth should slow to zero.

If the population exceeds the carrying 
capacity (overshoots) it will decline (negative 
growth rate) 



  

Adding carrying capacity

.

Negative feedback loop



  

The logistic equation



  

Look at the second term in the equation

If N= K it becomes N/N 
This is equal to one
So 1-1= zero
NO GROWTH at the carrying capacity

How does this work?



  

 

If N is very small N/K tends to zero 
So 1-0= 1
So the initial growth rate is not affected
by the carrying capacity

What if N is small?



  

What does this imply?

If we ignore genetic effects (which we  shouldn't) populations 
increase more quickly when they are small.

This is because each individual has greater access to resources

When populations reach the carrying capacity they stop growing

If a population overshoots the carrying capacity it declines

If populations did not tend to “rebound” after declines extinctions 
would take place more frequently



  

What does this imply?

If we manage populations we may wish to hold 
their size below carrying capacity

“Maximum sustainable yield” may theoretically 
be obtained by keeping the population  around 
half the carrying capacity.



  

R vs K selected species

Populations of large, long lived species may frequently reach 
and exceed carrying capacity

Natural selection may act on traits that allow survival when 
competition takes place for resources (K selection)

Small, short lived animals are subject to fluctuations in 
population size.

Natural selection may act on traits that allow rapid population 
growth (r selection) 



  

Cycles and chaos

If populations “overshoot” the carrying 
capacity they will fall

In some circumstances this may produce 
“boom and bust” cycles

Organisms that are very short lived with high 
reproductive rates may show chaotic 
behaviour 



  

Chaotic dynamics



  

Test it yourself

https://dgolicher.shinyapps.io/Logistic_model
●

https://dgolicher.shinyapps.io/Logistic_model


  

Individual based model simulation

Use simple rules to investigate system 
behaviour

Rabbits eat grass to gain energy. 

When they obtain enough energy they may 
reproduce.

The total amount of energy depends on the 
nutritive value of the grass and the rate of 
growth after being eaten.



  



  

Play with the model yourself

http://ccl.northwestern.edu/netlogo/models/R
abbitsGrassWeeds

http://ccl.northwestern.edu/netlogo/models/RabbitsGrassWeeds
http://ccl.northwestern.edu/netlogo/models/RabbitsGrassWeeds


  

Conclusions

Key words and concepts to take from the lecture
– Cybernetics: The study of complex self regulating systems

– System dynamics modelling: Interlinked sets of differential 
equations that represent complex systems with states that 
change over time.

– Homeostasis: The tendency of systems to return to a given state

– Positive feedback loops: Processes and linkages that reinforce 
and accelerate a given trajectory of change

– Negative feedback loops: Processes and linkages that slow down 
a given trajectory and tend to return a system to an equilibrium 
state



  

Conclusions

Key words and concepts

Deterministic chaos.  Systems that are 
determined by definable rules but which 
produce dynamics that are highly sensitive to 
the initial state and are thus intrinsically 
unpredictable (butterflies' wing effect)
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