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Chapter 1

Introduction

In this unit you wil learn to apply a range of statistical methods that are considered to be more advanced
than are typically taught on an introductory course in data analysis. However the unit aims to provide
more than a simple set of recipes for applying methods. Advances in computing power have resulted in
an explosion of new methods for analysing ecological data. It would be impossible to design a course that
includes examples of all the possible methods that might be relevant to the analysis of a data set that forms
the subject of a master’s dissertation. Data analysis does not simply involve applying statistical methods.
Good data management and effective data manipulation are just as important as good analysis. So an
important element of the course wil focus on understanding the nature of data and the ways data can be
manipulated.

1.1 The new statistics

The underlying philosophy of the course is based on a contemporary concept of good statistical practice.
This has sometimes been called “the new statistics” (Hobbs and Hilborn, 2006)

The aim of the new statistics is to evaluate the relative strength of evidence in data for hypotheses represented
as models. Traditionally, models used by ecologists for statistical inference have been limited to a relatively
small set of linear forms. The functional forms and definitions of parameters in these models were chosen
for statistical reasons; that is, they were not constructed to explicitly symbolize biological states and processes.
Consequently, composing models to represent hypotheses has traditionally played a relatively minor role in
developing testable statements by most ecological researchers. Statistical models were used to represent verbal
hypotheses, and little thought was applied to the model building that ultimately supported inference.

The new statistics require deliberate, thoughtful specification of models to represent competing
ecological hypotheses

1.2 Statistical models vs statistical tests

“New statistics” has developed not just as a response to advances in computing power, although that has
played an important role. A fundamental element of contemporary thinking with regard to the use of
statistics is the avoidance, or at the least the downplaying, of null hypothesis **tests* (NHST). This can
be confusing for students who have taken introductory courses in statistics in which the words “test” and
“p-value” constantly were emphasised. Many students (and many researchers) may be unaware that the
whole basis of null hypothesis testing was in fact controversial from the outset. Many prominent statisticians
have argued against NHST (Nickerson et al., 2000). Some of the criticisms that can be found in Nickerson’s
excelent review have been severe. For example “Null hypothesis testing provides researchers with no incentive
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8 CHAPTER 1. INTRODUCTION

to specify either their own research hypotheses or competing hypotheses…. it is surely the most bone-headedly
misguided procedure ever institutionalized in the rote training of science students” (Gigerenzer, 1998). The
biggest problem with NHST is that it does not actually test a hypothesis of genuine interest. Some of the
other arguments against NHST made by statisticians are quite technical in nature, although they are well
worth trying to understand. A reasonably non-technical review is provided by Goodman (2008) in which 12
common misconceptions are laid out clearly. A very influential and highly cited paper that restates many of
the criticisms of NHST made by statisticians in the context of ecology is Johnson (1999). I won’t repeat all
the arguments made by Johnson. It it well worth reading the paper.

1.3 Bayesian vs frequentist approaches to inference

It is my belief (and the word belief is important in this context) that all students should be aware that a
vigorous debate arose between two schools of thought regarding the nature of statistical inference at the
time that many of the conventional, text book, statistical tests were being developed. It is fascinating
to read the words of R A Fisher writing in the “Design of experiments”, first published in 1935 . Fisher
stated that “I shall not assume the truth of Bayes’ axiom”. What is most remarkable about that particular
statement is that Bayes’ axiom is a simple mathematical consequence of applying the rules of probability.
There is no controversy whatsoever regarding the axiom’s mathematical validity. Fisher was aware that
implementing what was known as “inverse probability” would be mathematically unfeasible in the context of
the sort of problems he was working on at the time. Integration formulas to calculate marginal likelihoods are
horrendously complex in even very simple cases involving continuous ditributions, and are totally intractable
for most designs. However his main objection to the use of Bayes’ theorem was that to him it appeared
to introduce an element of subjectivity, and thus did not allow researchers to reach clear conclusions. It is
unfortunate that this led to what some studies of the history of scientific thought have described as a “holy
war” between two schools of thought. The unfortunate consequence of this was that efforts to remove the
incorporation of subjective prior beliefs into analyses led to the conventional analytical device of NHST in
which all prior information was ignored. This was never intended by Fisher himself. It occurred almost
by accident, as a result of the development of NHST by Pearson and Neyman. Fisher originally intended
p-values to be indications that further research was worth conducting, and not as decision rules regarding
the truth of either a null hypothesis nor any alternative hypothesis. However for a while this got overlooked
in statistical courses that emphasised the logic and mathematical basis of NHST without placing the null in
the context of any field of study. Students being told to state null hypotheses in the form H0 “There is no
difference in species richness between heathland and grassland” would be quite correct in pointing out the
illogical and unhelpful nature of H0. We already know a priori that there must be a difference, so why on
earth would we ever test this? The answer is that we clearly should not. In an applied setting we would aim
to develop a much richer and more informative analysis of the difference between the two vegetation types,
conditional on the data that we have available. There is no need to place subjective prior probabilities on
the size of the difference in order to do this, but to ignore all relevant knowledge regarding the two systems
would clearly be quite wrong. Finding evidence against H0 is only worth stating as an objective of a study
such if H0 is inherently credible. This can be reasonable in the context of a well planned experiment, but In
all other cases there will be much more information to be obtained from the data when H0 is not considered
to be an objective of the analysis.

1.4 Using p-values with discretion

In the quantiative and spatial analysis unit I introduced a pragmatic approach towards NHST that will
continue to be used on this unit. This approach emphasises confidence intervals as the most important result
of applying technique based on frequentist inference. It accepts the use of p-values associated with null
hypothesis tests, but only as the “statistic of last resort”. The actual numerical values of confidence intervals
match those produced by Bayesian methods with non-informative priors in many cases. So, confidence
intervals can informally be interpreted as measures of uncertainty regarding the parameters of interest, even
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if formally they are not. When taking this approach, when running any regresion analysis the most important
result would be the slope of the line, and associated confidence interval. The next most valuable output is
the coeficient of determination (R squared) as a measure of the signal to scatter ratio. If all else fails, then
a p-value can be reported, with due discretion and care with regard to the wording of the interpretation, as
a “test” of any detectable association between variables conditional on the data obtained. Although power
analysis is highly advisable when planning any study in order to assess whether the level of replication is
likely to be sufficient to provide statistical signficance, when adopting this pragmetic approach you should
not set out with the initial intention of “testing” a null hypothesis. Instead you should aim to estimate effect
sizes. The most important element of any study is the scientific question that is of interest. Many questions
can only be answered through estimating the size of effects and/or the shape and form of any response.
Simply detecting a difference, an association or a correlation does not usually answer the question fully. We
should, and usually can, do much better than that. This implies that non parametric methods will not be
taught on this course, although it is still worth being aware of them as potential fall back methods of last
resort when all else fails. Non parametric tests are easy to run and understand in R. The R code to run
them is provided in this crib sheet for reference.

http://r.bournemouth.ac.uk:82/AQM/AQM_2018/Crib_sheets/Classical_statistical_tests.html

1.5 Common pitfalls

Some of the advice provided in the literature regarding the validity of statistical tests when assumptions are
not met is potentially misleading. In non experimental studies the assumptions of almost any inferential
method are rarely met in full. So technically almost all statistical methods might be considered to be “invalid”.
In reality it is not the violation of an assumption that is important, it is the degree to which an assumption
is violated and the influence that any violation may have on the validity of the substantive findings that is
really important. If an analysis produces a p-value of < 0.0001 when using a method that leads to minor
violations of assumptions, almost any correction will still lead to rejection of the null hypothesis. So a
conclusion based only on NHST will not change at all. On the other hand confidence intervals may have
to be broadened when the violations are corrected for, so a modification as a result of making a correction
for unmet assumptions will take place. This is a powerful additional argument against emphasising NHST
alone (naked p-values) that is not mede clear in all the papers cited here. Many students have learned to
test “the data”” for normality. This is poor advice, for many reasons, not least of which is that students
often test the wrong element in the data The assumption of normality in regresion analysis applies to the
residuals, not to the raw date (Zuur et al., 2010). Rigorous diagnostics are a very important part of building
statistical models, but these are best conducted through careful inspection of the patterns shown in the
residuals rather than through automated statistical tests. A statistical test of normality does not actually
test the data anyway. It is, in reality, testing whether the data could have been obtained from an underlying
normal distribution. The only way to “test” the data themselves is to look at them carefully. As suggested
by Steel et al. (2013), plot the data early and often. When looking at observational data that were not
derived from a conventional experimentla design, you should adopt an incremental approach to choosing an
analysis. There is nothing to prevent you using the “wrong” models as initial tools for understanding the
data and (hopefully) finally choosing a better, more appropriate model as the analysis progresses.

http://r.bournemouth.ac.uk:82/AQM/AQM_2018/Crib_sheets/Classical_statistical_tests.html
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Chapter 2

R programming

During the course of this unit you will develop the skills to be able to apply R code to the analysis of a
range of data sets. Although crib sheets will be provided with model code for all the analytical techniques
shown on the course, in order to manipulate data effectively and apply novel techniques it is important to
begin to become more comfortable with basic R programming techniques and concepts. This week we will
revise some of the fundamentals of R programming.

2.1 Using R to simulate data

If you understand data structures you can usually choose and run the right analysis. If you do not consider
the basic properties of your data then not only will you not know which analysis to use, but you will probably
not even be able to import the data into any software in order to run it!

2.2 Simple R programming

Try running some simple commands by stepping through them in code chunks. When working in RStudio
notice that the results are shown under the code chunk when
1+1

## [1] 2

Experiment some more. For example ..
5*10

## [1] 50
12/4

## [1] 3
3^2

## [1] 9

There is a lot more maths functionality built into the R language that you can find out about as you go
on. However to follow the primer you do not need to learn any more commands than are shown in this
document.

11
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Note that when you type maths in the console the output is just printed to the screen. This is not stored
anywhere in the computer’s memory. So we need to bring in the concept of data objects. A data object
“holds” the numbers and can be manipulated by commands. This is how R manages to run analyses on your
data. When you import a file containing data it will be stored into a data object.

The simplest data object is a variable. If a variable only contains one number it is known formally as a scalar.
A variable with many numbers is a vector. So let’s assign a single value to a variable to form a scalar. We
do that in R using the <- operator which is typed as a combination of the less than sign < with a horizontal
bar -.
x<-5

Nothing appears to have happened! However you now have your first data object, a scalar called x. This is
stored in memory. So try this.
x*2

## [1] 10

Notice that this would not have worked if you had typed X*2 as R is case sensitive.

So, how do we form a vector with multiple values? When you are analysing your own data the answer is
that you usually won’t need to. You import all the values from a file. But if you wish to form a vector in
the console you must use the concatenation operator “c”. So this gives the variable x a series of values.
x<-c(1,4,5,9,10,11,12,34,56,67,100,123,45)

Now see what happens if you type
x*2

## [1] 2 8 10 18 20 22 24 68 112 134 200 246 90

You can carry out any sort of mathematical operation that involves x and all the values in the vector will
be used. Notice that the results are just printed out to the console and lost.

If you want to assign the results to a new variable you use the “<-” operator again. This is a very common
practice when analysing data. So, say you are intending to work with the natural logarithm of x you might
write.
logx<-log(x)

You can see that this has worked by writing the new variable name so that R prints out the contents to the
console.
logx

## [1] 0.000000 1.386294 1.609438 2.197225 2.302585 2.397895 2.484907
## [8] 3.526361 4.025352 4.204693 4.605170 4.812184 3.806662

This time you can see more clearly the purpose of the indices in the output. The second line starts with the
12th number in the vector.

You can find the names of the data objects that are held in memory by typing ls().
ls()

## [1] "logx" "x"

2.2.1 Data structures

Now we can begin looking at data structures. You can ask R to tell you about the structure of any object
that it has in memory by typing str().
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str(x)

## num [1:13] 1 4 5 9 10 11 12 34 56 67 ...
str(logx)

## num [1:13] 0 1.39 1.61 2.2 2.3 ...

So R has told us that both x and logx are numerical vectors. If you have a lot of data you probably do not
want to look at all of it at once.

How does this relate to choosing an analysis? We have seen that this particular variable contains numbers.
However in statistical analysis we also use “variables”” that don’t consist of numbers. They vary in another
respect. If you look at any introductory statistical textbook you will see a chapter that defines types of
variables in terms of interval, ordinal and scale variables and nominal and ordinal variables.

The sort of analysis that you will be able to run is determined by the sort of variable, or combination of
variables, that you are working with.

Let’s set up a categorical variable. Experienced users of R often want to replicate values in order to set
up some test data as Dytham suggests. So R has a range of functions for making data. The rep function
replicates the values.
gender<-rep(c("Male","Female"),each=10)
gender

## [1] "Male" "Male" "Male" "Male" "Male" "Male" "Male"
## [8] "Male" "Male" "Male" "Female" "Female" "Female" "Female"
## [15] "Female" "Female" "Female" "Female" "Female" "Female"

Now if we ask R about the data structure it will tell us that we have a character vector.
str(gender)

## chr [1:20] "Male" "Male" "Male" "Male" "Male" "Male" "Male" "Male" ...

In statistics categorical variables are referred to as factors. Factors are special character vectors with num-
bered levels. R automatically assumes that any column in a data file that contains non numeric values is a
factor and converts the data to that form. In this case we need to tell R to turn the character vector into a
factor.
gender<-as.factor(gender)
str(gender)

## Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...

Now R tells us that gender is a factor with two levels. There is no intrinsic order to the levels. R places
them in alphabetical order by default. The important element to be aware of is that gender is a variable. It
varies in a known and specific way (it has two levels), but it is a variable all the same. You cannot calculate
means, medians, standard deviations or any similar summary statistics using a factor. However you can,
and will, use them together with numerical variables in many types of analysis.

Let’s produce a numerical variable to go alongside this. In the UK the mean height of men is around 176
cm and women 164 cm. So we could produce a vector with these values using this code. What we need to
do is to replicate the “expected value” for each gender to be placed alongside the factor level.
height<-rep(c(176,164),each=10)
height

## [1] 176 176 176 176 176 176 176 176 176 176 164 164 164 164 164 164 164
## [18] 164 164 164
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str(height)

## num [1:20] 176 176 176 176 176 176 176 176 176 176 ...

So now we have another numerical variable. However if we really carried out a survey of people’s heights
we would be absolutely amazed if we got data like this. Although the numbers represent an estimate of
the expected value for each of the ten men and women we know from experience that people’s heights
vary around this value. In fact they vary quite a lot. The standard deviation is around 6cm. So we need
to add some variability. This demonstrates clearly how statistical procedures work. Data consists of two
components. It has an underlying structure that we typically want to find out about. In this case there
is a difference in heights which is related to gender. There is also random variability, somtimes called the
stochastic component. We are usually less interested in this directly, but we need to be very careful to make
justifiable assumptions about this variability in order to correctly analyse the data.

Knowing this we can now make our variable more realistic by adding in some simulated values taken from
a normal distribution with this standard deviation.
set.seed(1)
height<-height+rnorm(20,sd=6)
height

## [1] 172.2413 177.1019 170.9862 185.5717 177.9770 171.0772 178.9246
## [8] 180.4299 179.4547 174.1677 173.0707 166.3391 160.2726 150.7118
## [15] 170.7496 163.7304 163.9029 169.6630 168.9273 167.5634

We may want to round the values to one decimal place to make them equivalent to the sort of measurements
we might make in practice.
height<-round(height,1)

Now we have two variables that are held in R’s memory. We are assuming that they both form part of a
simulated data set that we could have obtained if we had measured a stratified random sample of twenty
students consisting of ten men and ten women. Let’s call the survey “hsurvey”” and make what is known
as a data frame to hold the results.
hsurvey<-data.frame(gender,height)
str(hsurvey)

## 'data.frame': 20 obs. of 2 variables:
## $ gender: Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
## $ height: num 172 177 171 186 178 ...

So we have now made up data that has the same structure and similar properties to the results we would get
from carrying out a simple survey of people’s heights. The basic concepts used to do this can be extended
to more complex situations and used to help the design of experiments.

A data frame is the basis of almost all statistical analysis. It consists of two or more columns that line up
in such a way that the measurements or observations recorded have been taken from the same individual
member of a sample. This is often equivalent to a single sheet in a spreadsheet. R tells us that we have
one factor and one numerical variable in this case. We might have measured many other variables at the
same time and produced a much wider set of data. These may have been either categorical or numerical.
Providing that they all “line up”” and correspond to the same individual we have our data frame. Many
standard statistical techniques use two variables together. Later on in the course you will see how we can
analyse data consisting of more than two variables using multivariate analysis.

The complete data frame is shown below.
hsurvey

## gender height
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## 1 Male 172.2
## 2 Male 177.1
## 3 Male 171.0
## 4 Male 185.6
## 5 Male 178.0
## 6 Male 171.1
## 7 Male 178.9
## 8 Male 180.4
## 9 Male 179.5
## 10 Male 174.2
## 11 Female 173.1
## 12 Female 166.3
## 13 Female 160.3
## 14 Female 150.7
## 15 Female 170.7
## 16 Female 163.7
## 17 Female 163.9
## 18 Female 169.7
## 19 Female 168.9
## 20 Female 167.6

If you want to remove all the other variables you set up from memory and leave just the data frame you
could type.
remove(x,logx,height,gender)
ls()

## [1] "hsurvey"

Now if we ask R to print height or gender it will not find them. They have been placed within the data
frame.
height

## [1] 2.255 0.865 1.190 -1.336 -1.334 -1.036 -0.684 0.820 0.061 0.635
## [11] 0.616 0.045 -0.002 1.375 -0.060 -0.356 0.094 1.117 0.054 1.627
## [21] 1.786 -0.503 0.883 1.494 0.729 0.367 1.367 1.768 1.671 -0.201
## [31] -0.811 -0.482 2.052 -0.375 0.167 -0.976 0.460 -0.893 2.222 -0.578
## [41] 0.766 -1.005 -0.030 0.170 -0.348
gender

## [1] Male Male Male Male Male Male Male Male Male Male
## [11] Female Female Female Female Female Female Female Female Female Female
## Levels: Female Male

We can refer to the variables by writing out the full name of the data frame and the variable we want,
separated by “$”
hsurvey$height

## [1] 172.2 177.1 171.0 185.6 178.0 171.1 178.9 180.4 179.5 174.2 173.1
## [12] 166.3 160.3 150.7 170.7 163.7 163.9 169.7 168.9 167.6
hsurvey$gender

## [1] Male Male Male Male Male Male Male Male Male Male
## [11] Female Female Female Female Female Female Female Female Female Female
## Levels: Female Male



16 CHAPTER 2. R PROGRAMMING

Or we can attach the data frame. This makes the variables available directly. Notice that if we have several
data frames containing variables with the same name this could cause confusion (so I don’t usually do this)
attach(hsurvey)

## The following object is masked from d (pos = 38):
##
## height

## The following object is masked from d (pos = 54):
##
## height

## The following objects are masked from hsurvey (pos = 69):
##
## gender, height
height

## [1] 172.2 177.1 171.0 185.6 178.0 171.1 178.9 180.4 179.5 174.2 173.1
## [12] 166.3 160.3 150.7 170.7 163.7 163.9 169.7 168.9 167.6
gender

## [1] Male Male Male Male Male Male Male Male Male Male
## [11] Female Female Female Female Female Female Female Female Female Female
## Levels: Female Male

2.2.2 Saving and loading data frames

Now that we have made up some data we might want to save it in the format that we will eventually use to
capture our real data. The simplest, most portable data format is a CSV (Comma Separated Variable) file.
Such a file can be easily read by all software.

First we must find a place to store the data. The standard practice is to make a separate data directory
(folder) for each analysis that you carry out. You then set this as the working directory using the menu
options in the R console. Once you have set your working directory (which could be on a USB stick for
portability) you can save the data that is held in memory using an R command.
write.csv(hsurvey,file="hsurvey.csv",row.names=FALSE)

The command has three elements. The first is the name of the data frame that you wish to save. This is
not quoted. The second is the name of the file into which you are going to save the data. The third tells R
not to add row names to the file (these are not usually necessary).

Data frames are the standard input to all statistical analysis and are of a consistent form. Many different
sorts of data summaries and tables can be generated from a data frame quickly by statistical software.

You can check the working directory using this command.
getwd()

## [1] "/home/rstudio/rstudio/AQM_book"
#In my case I am running R on Linux so the paths look different to Windows

To see a list of files in the directory type dir()
dir()
##[1] hsurvey.csv
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If we remove the dataframe we formed we will be left with nothing in R’s memory
remove(hsurvey)
ls()

To load it back from the file type
hsurvey<-read.csv("hsurvey.csv")
str(hsurvey)

2.2.3 Histogram of simulated data

library(ggplot2)
g0<-ggplot(hsurvey,aes(x=height))
g0+geom_histogram(fill="grey",colour="black",binwidth=3)+facet_wrap(~gender,nrow=2)
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So we have simulated some data, saved it, and reloaded the data into R. We have then looked at it as a
histogram.

2.2.4 Saving a workspace

You can save the
save(list=ls(),file="height_study.rda")
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2.2.4.1 Installing packages

Many of the more advanced features of R have been implemented within add on packages. These are held
online at numerous mirror sites throughout the world. Packages are what makes R the important research
tool that it is. Notice that the top articles from Methods in Ecology and Evolution present recently built R
packages.

In order to use packages you have to install them to your hard disk. You do this once, and need to be online
in order to download them. Once installed you make a package available at the start of a session using the
command “library”. All the most useful packages have been installed already on the PCs in the lab. You
may want to add some packages to your laptop. This can be done either using the menu options at the top
of the console or by writing a command (if you know the names of the packages you need).

For example the following line will install the package vegan. This provides access to a large range of useful
methods for analysing biodiversity and community data.
install.packages("vegan")

Once installed you can use vegan by typing
library(vegan)

During the course I will tell you which packages are most useful, and what they are useful for. I will also
show you how to get help on functions in order to work independently. For now, just be aware that if R tells
you that “there is no package called vegan”” if you type “library(vegan)” it means that the package has not
yet been downloaded. You would then need to install it first.

2.2.4.2 More vector functions

As we have seen functions act on the whole vector at once. This applies also to functions that return only
one number as a result.
x<-c(1,3,5,7,4,2,7)
sum(x)

## [1] 29
mean(x)

## [1] 4.142857
length(x)

## [1] 7
var(x)

## [1] 5.47619
sd(x)

## [1] 2.340126

It is very important to realise that a vector with NA values can cause problems for these sorts of functions.
You need to tell R explicitly to remove the NAs. If not the result itself will be an NA. For example.
x<-c(1,2,3,4,5,6)
mean(x)

## [1] 3.5
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x<-c(1,2,3,4,5,NA)
mean(x)

## [1] NA
mean(x,na.rm=T)

## [1] 3

This is a very common pitfall for beginners. In general, if something does not work as you expect look for
NAs!

2.2.5 Generating sequences of numbers in R

One of the most useful features of R is the ease with which you can generate sequences of numbers and
simulated data sets. To produce a sequence you can use the : syntax.
x<-0:100
0:100

## [1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## [18] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
## [35] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
## [52] 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
## [69] 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
## [86] 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
x<-30:10
x

## [1] 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

A longer but more flexible way of producing a sequence is with seq. For example to produce even numbers
between 0 and 100.
x<-seq(0,100,by=2)
x

## [1] 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
## [18] 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66
## [35] 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100

Say we know the length of the sequence we want but have not worked out the intervals.
x<-seq(0,100,length=23)
x

## [1] 0.000000 4.545455 9.090909 13.636364 18.181818 22.727273
## [7] 27.272727 31.818182 36.363636 40.909091 45.454545 50.000000
## [13] 54.545455 59.090909 63.636364 68.181818 72.727273 77.272727
## [19] 81.818182 86.363636 90.909091 95.454545 100.000000

2.2.5.1 Using rep to replicate a vector

If we want ten copies of the same vector one after the other we can use.
x<-rep(c(1,4,9,23),times=10)
x
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## [1] 1 4 9 23 1 4 9 23 1 4 9 23 1 4 9 23 1 4 9 23 1 4 9
## [24] 23 1 4 9 23 1 4 9 23 1 4 9 23 1 4 9 23

However we might want each number in the vector replicated ten times before moving to the next. In this
case we use each instead of times.
x<-rep(c(1,4,9,23),each=10)
x

## [1] 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 9 9 9
## [24] 9 9 9 9 9 9 9 23 23 23 23 23 23 23 23 23 23

2.2.5.2 Replicating text

When designing a format to hold the results from a planned experiment or field survey it can be very useful
to generate replicated sequences of text for the factor levels or grouping variables. This is also very easy.
x<-rep(c("Control","Treatment1","Treatment2"),each=10)
x

## [1] "Control" "Control" "Control" "Control" "Control"
## [6] "Control" "Control" "Control" "Control" "Control"
## [11] "Treatment1" "Treatment1" "Treatment1" "Treatment1" "Treatment1"
## [16] "Treatment1" "Treatment1" "Treatment1" "Treatment1" "Treatment1"
## [21] "Treatment2" "Treatment2" "Treatment2" "Treatment2" "Treatment2"
## [26] "Treatment2" "Treatment2" "Treatment2" "Treatment2" "Treatment2"

Or of course
x<-rep(c("Control","Treatment1","Treatment2"),times=10)
x

## [1] "Control" "Treatment1" "Treatment2" "Control" "Treatment1"
## [6] "Treatment2" "Control" "Treatment1" "Treatment2" "Control"
## [11] "Treatment1" "Treatment2" "Control" "Treatment1" "Treatment2"
## [16] "Control" "Treatment1" "Treatment2" "Control" "Treatment1"
## [21] "Treatment2" "Control" "Treatment1" "Treatment2" "Control"
## [26] "Treatment1" "Treatment2" "Control" "Treatment1" "Treatment2"

2.2.6 Logical vectors and subsetting

One of the keys to using R efficiently is the concept of logical vectors, indices and subsetting. However the
concept does take a little effort to get used to. Let’s take it a step at a time. Say we have a vector x which
we have setup like this.
x<-seq(-4,10,by=2)
x<-rep(x,times=3)
x

## [1] -4 -2 0 2 4 6 8 10 -4 -2 0 2 4 6 8 10 -4 -2 0 2 4 6 8
## [24] 10

Now we can ask a question that will be answered as true or false for each of the numbers. Is the element of
x greater than zero?
x>0

## [1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
## [12] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
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## [23] TRUE TRUE

R replies with a vector stating whether the result is true or false. We can also ask which of the numbers is
greater than zero.
which(x>0)

## [1] 4 5 6 7 8 12 13 14 15 16 20 21 22 23 24

Now R replies with the indices of the elements of the vector.

Subsetting the vector involves the use of the square brackets {[} and {]}. If you include either a logical
vector with TRUE and FALSE values or numeric indices within the square brackets R will subset the vector.
Either way works.
x[x>0]

## [1] 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
x[which(x>0)]

## [1] 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

When we move on to handling more than one variable at a time using data frames we will see that the same
concept can be used to subset whole blocks of data.It is a very powerful and fundamentally simple way of
manipulating data.

A more complex example is given here. This takes every second member of x using a sequence of indices as
a subset.
x[seq(2,length(x),by=2)]

## [1] -2 2 6 10 -2 2 6 10 -2 2 6 10

Could you follow how this worked? Working outwards

• length(x) gives the number of elements in x. Lets call this n
• seq(0,length(x),by=2) gives the vector of indices 2,4,6,….n.
• A subset of x is found using the square brackets.

With experience it is common to wrap up several steps in a single line. There is nothing wrong with explicitly
writing
n<-length(x)
ind<-seq(2,n,by=2)
x[ind]

## [1] -2 2 6 10 -2 2 6 10 -2 2 6 10

2.2.6.1 Sorting and ordering

We can also sort vectors. There are two ways of doing this. The first is very direct, but I really do not
recommend it. It uses the sort command with the argument decreasing=TRUE or FALSE
sort(x,decreasing=T)

## [1] 10 10 10 8 8 8 6 6 6 4 4 4 2 2 2 0 0 0 -2 -2 -2 -4 -4
## [24] -4

That’s simple enough. However it is much better practice in the long run to use order. This needs a little
explaining, again we will take it step by step.
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order(x,decreasing=T)

## [1] 8 16 24 7 15 23 6 14 22 5 13 21 4 12 20 3 11 19 2 10 18 1 9
## [24] 17

Order has not given us the numbers in order! But of course it should not, as sort does that. Instead order
has given us the the indices in order. Notice that if there are ties, as in this case, R respects the original
order for the tied numbers. So how can we use order to sort the vector? If you have followed the logic of
using indices to refer to elements of a vector you might have guessed.
x[order(x,decreasing=T)]

## [1] 10 10 10 8 8 8 6 6 6 4 4 4 2 2 2 0 0 0 -2 -2 -2 -4 -4
## [24] -4

Although this involves more typing than simply writing sort, it is more powerful. The power comes from
the way indices can be used with many variables at once. When we move on to see data frames this will be
clearer. For the moment look at this simple example to see the logic.
x<-c(1,3,2,4)
y<-c("A","B","C","D")
y[order(x,decreasing=F)]

## [1] "A" "C" "B" "D"

2.2.6.2 Ranks

Finding ranks is a very common procedure in statistics. This is a slightly different problem. We need a way
to deal with ties, and there is more than one solution to the problem.
x<-c(1,1,2,3,4,5,5)
rank(x,ties="average")

## [1] 1.5 1.5 3.0 4.0 5.0 6.5 6.5
rank(x,ties="max")

## [1] 2 2 3 4 5 7 7
rank(x,ties="min")

## [1] 1 1 3 4 5 6 6

The last example coincides with the familiar ranks given in sports (joint gold medal followed by the bronze).
Notice that there is no decreasing argument to ranks. The lowest numbers take the lowest ranks. If you
really want to rank performance scores you must reverse them first by, say, subtracting all the scores from
the maximum possible.
x<-c(1,1,2,3,4,5,5)
rank(max(x)-x,ties="min")

## [1] 6 6 5 4 3 1 1

2.3 Exercise

In order to practice putting together these commands in order to simulate some data try this.
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A researcher is interested in looking at the differences in diameters of trees in three different woodland sites
in the New Forest. At each site there are several different species. In order to simplify the task we will
consider only two types of trees … conifers and broadleaves. We will also simplify the exercise by assuming
that the same number of trees (50) are sampled in each woodland.

Set up a dataframe with three columns. One column represents the site. The second represents the type of
tree (i.e. conifer or broadleaf). The third represents the diameters. So there will be 150 observations (rows)
in all. Try to produce data in which there is a difference in mean diameter that is affected by the site from
which the measurements are taken and the type of tree being measured. You can assume that the random
variation in diameters is normally distributed and that measurements are taken to the nearest cm.
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Chapter 3

Introduction to statistical modelling

In most cases the relationship between a traditional statistical test and the model is not explicit, although
one way anova is based on an underlying statistical model. Statistical modelling can allow you to extract
more information from your data. Most contemporary papers in ecology use models of some kind. Even
if the nature of the data you collect limits your options, it is very important to learn to fit and interpret
statistical models in order to follow the literature.

3.1 What is a statistical model?

To some extent statistical modelling is easier than other forms of ecological modelling. Building process
based models requires a great deal of understanding of a system. Statistical models are built from the data
themselves. Providing you do have some data to work with you can let the combination of data and prebuilt
algorithms find a model. However there are many issues that make statistical modelling challenging.

A statistical model is a formal mathematical representation of the “sample space”“, in other words the
population from which measurements could have been drawn. It has two components.

• An underlying “deterministic” component, that usually represents a process of interest

• A stochastic component representing “unexplained” variability So, a statistical model effectively parti-
tions variability into two parts. One part represents some form of potentially interesting relationship
between variables. The other part is just “random noise”. Because statistics is all about variability, the
“noise” component is actually very important. Variability must be looked at in some detail on order
to decide on the right model. Many of the challenges involved in choosing between statistical models
involves finding a way to explain the “unexplained” variability.

3.1.1 Uses of models

The literature on statistical modelling frequently uses the terms “explanation”” and “prediction”” to describe
the way models are used. Although the same model can have both roles, it is worth thinking about the
difference between them before fitting and interpreting any models.

3.1.1.1 Prediction

Models can be used to predict the values for some variable when we are given information regarding some
other variable upon which it depends. An example is a calibration curve used in chemistry. We know that
conductivity and salinity are directly related. So if we measure the conductivity of liquids with known

25
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salinities we can fit a line. We can then use the resulting model to predict salinity at any point between
the two extremes that we used when finding the calibration curve. Notice that we cannot easily extrapolate
beyond the range of data we have. We will see how the same concept applies to the models we use in
quantiative ecology.

3.1.1.2 Explanation

The idea that the variability in the data can be “explained” by some variable comes from the terminology
that was used when interpretating experimental data. Experiments usually involve a manipulation and a
control of some description. If values for some response differ between control and intervention then it is
reasonable to assume that the difference is “explained” by the intervention. If you wish to obtain data that
are simple to analyse and interpret you should always design an experiment. However, experiments can be
costly. Ecological systems are often slow to respond to interventions, making experiments impossible within
the time scale of a master’s dissertation. We are often interested in systems that cannot be easily modified
anyway on ethical or practical grounds. Thus in ecology we often have to interpret associations between
variables as evidence of process that “explain” a relationship. Correlation is not causation. Although patterns
of association can provide insight into causality they are not enough to establish it. So, when you read the
words “variance explained” look carefully at the sort of data that are being analysed. In an ecological setting
this may only suggest close association between variables, not a true explanation in the everyday sense of
the word.

3.2 The general linear model

General linear models lie behind a large number of techniques. These have different names depending on
the type of data used to explain or predict the variability in a numerical response variable.

• Regression (Numerical variable)
• Analysis of variance (One or more categorical variables)
• Analysis of covariance (Categorical variable plus numerical variable)
• Multiple regression (Multiple numerical variables)

Although these analyses are given different names and they appear in different parts of the menu in a program
such as SPSS, they are all based on a similar mathematical approach to model fitting. In R the same model
syntax is used in all cases. The steps needed to build any linear model are…

• Look at the data carefully without fitting any model. Try different ways of plotting the data. Look for
patterns in the data that suggest that they are suitable for modelling.

• Fit a model: The standard R syntax for a simple linear regression model is mod<-lm(y~x) However
model formulae may be much more complex.

• Look at whether the terms that have been entered in the model are significant: The simplest R syntax
is anova(mod). Again, this part of the process can be become much more involved in the case of models
with many terms.

• Summarise the model in order to understand the structure of the model. This can be achieved with*
summary(mod)

• Run diagnostics to check that assumptions are adequately met. This involves a range of techniques
including statistical tests and graphical diagnoses. This step is extremely important and must be
addressed carefully in order to ensure that the results of the exercise are reliable.
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3.3 Regression

3.3.1 Theory

The regression equation is ..

y = a + bx + ϵ where ϵ = N(o, σ2)

In other words it is a straight line with a as the intercept, b as the slope, with the assumption of normally
distributed errors (variability around the line)

The diagram below taken from Zuur et al (2007) illustrates the basic idea. In theory, if we had an infinite
number of observations around each point in a fitted model, the variability would form a perfect normal
distribution. The shape and width of the normal curves would be constant along the length of the model.
These normal curves form the stochastic part of the model. The strait line is the deterministic part. This
represents the relationship we are usually most interested in. The line is defines by its intercept with the
axis and its slope.
knitr::include_graphics("figs/regression1.png")

For any observed value of y there will be a fitted value (or predicted value) that falls along the line. The
difference between the fitted value and the observed value is known as the residual.



28 CHAPTER 3. INTRODUCTION TO STATISTICAL MODELLING

knitr::include_graphics("figs/regression.png")

In reality we do not have infinite observed values at each point. However if we collected all the residuals
together we should get a normal distribution.

3.3.2 Example

The example is taken from Crawley’s R book. It is very simplified and idealised, but serves to explain the
concepts. Crawley’s own ecological research involves herbivory. Here he presents an example in which the
growth of insect larvae on leaves with different concentrations of tannin has been measured. Tannin concen-
trations slow insect growth (Crawley unfortunately does not provide the units in which this is measured).
The question is, how much is growth inhibited by an increase of 1% in tannin concentration? The first step
after loading the data is to produce a scatterplot.
larvae<-read.csv("https://tinyurl.com/aqm-data/larvae.csv")
names(larvae)

## [1] "growth" "tannin"
attach(larvae)

## The following objects are masked from larvae (pos = 65):
##
## growth, tannin
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plot(growth~tannin)
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The scatterplot is produced using the syntax that we will use in the model. Growth is a function of (~)
tannin.

We now fit a model and assign the results to an object in R. We can call this “mod”. This contains all the
information about the fitted model.
mod<-lm(growth~tannin)

We can now look at the properties of the model. If we ask for an “anova”. R will produce the following
output.
anova(mod)

## Analysis of Variance Table
##
## Response: growth
## Df Sum Sq Mean Sq F value Pr(>F)
## tannin 1 88.817 88.817 30.974 0.0008461 ***
## Residuals 7 20.072 2.867
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This is similar to the table produced for an ANOVA involving categegorical variables (factors). It can be
interpreted in a similar way. Just as for an ANOVA we have an F ratio that represents the amount of
variability that falls along the regression line divided by the residual variation.

The numerator degrees of freedom for a simple regression is always one. The numerator degrees of freedom is
n-2 as we have estimated two parameters, the slope and the intercept. Thus we have found a very significant
effect of tannin concentration on growth F(1, 7) =31, p <0.001. You should report the R² values along with
the p-value.

A correlation test would have shown the same significant relationship, but without as much detail.
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cor.test(growth,tannin)

##
## Pearson's product-moment correlation
##
## data: growth and tannin
## t = -5.5654, df = 7, p-value = 0.0008461
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9796643 -0.5972422
## sample estimates:
## cor
## -0.9031408

The additional information that we have with a regression concerns the two elements in the regression
equation. The slope and the intercept.
summary(mod)

##
## Call:
## lm(formula = growth ~ tannin)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4556 -0.8889 -0.2389 0.9778 2.8944
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.7556 1.0408 11.295 9.54e-06 ***
## tannin -1.2167 0.2186 -5.565 0.000846 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.693 on 7 degrees of freedom
## Multiple R-squared: 0.8157, Adjusted R-squared: 0.7893
## F-statistic: 30.97 on 1 and 7 DF, p-value: 0.0008461

Remember the equation we used.

y = a + bx + ϵ

The intercept (a) is 11.76

The slope (b) is -1.22

Which means that growth (whatever this was measured in by Crawley) is reduced by 1.22 for each increase
of 1% in tannin concentration.

3.3.3 Confidence intervals

There is an issue with this way of summarising the results. If we only report the coefficients as given we
have ignored the fact that there was unexplained variation in the model. This variation produces uncertainty
regarding the true values of the parameters. The greater the unexplained variation (scatter or noise) around
the line, the less confident we can be regarding their values. The statistical mechanism used in the calculations
(that is not particularly complex, but can safely be taken on trust) allows us find confidence intervals for the
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parameters. If the confidence intervals do not include zero then the parameters are significant. There are
only a few cases where this is very meaningful for the intercept. We are usually more interested in the slope.
confint(mod)

## 2.5 % 97.5 %
## (Intercept) 9.294457 14.2166544
## tannin -1.733601 -0.6997325

So now we can go a bit further. Instead of giving a point estimate for the effect of tannin on growth we can
state that the 95% confidence interval for the effect of a 1% increase of tannin on growth lies between -1.73
and -0.7

3.3.4 Prediction

The equation can be used to predict the most likely value of y given a value of x. If we just ask R to “predict”
we get the fitted values for the values of the explanatory variable that we used when fitting the model.
predict(mod)

## 1 2 3 4 5 6 7
## 11.755556 10.538889 9.322222 8.105556 6.888889 5.672222 4.455556
## 8 9
## 3.238889 2.022222

So we can plot out the data again and show the predicted values as red points and draw the regression line.
plot(growth~tannin)
points(tannin,predict(mod),pch=21,bg=2)
lines(tannin,predict(mod))

0 2 4 6 8

2
4

6
8

10
12

tannin

gr
ow

th



32 CHAPTER 3. INTRODUCTION TO STATISTICAL MODELLING

3.3.4.1 Prediction with confidence intervals

As we have seen, a statistical model takes into account uncertainty that arises as a result of variability in
the data. So we should not simple look at the line of best fit as summing up a regression. We should add
some indication of our confidence in the result to the figure.

To achieve this nicely in R requires a couple of extra steps. After plotting the data with plot(growth~tannin)
we set up a sequence of 100 x values that lie between the minimum and the maximum. Now if we pass these
to the predict function in R and ask for confidence intervals (that by default are 95%) we get the figure
below.
plot(growth~tannin)
x<-seq(min(tannin),max(tannin),length=100)
matlines(x,predict(mod,list(tannin=x),interval="confidence"))
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The confidence bands refer to the fitted model. They show uncertainty regarding the regression line and are
calculated from the standard error.

3.4 Using ggplot2 for confidence intervals.

library(ggplot2)
g0<-ggplot(data=larvae, aes(x=tannin,y=growth))
g1<-g0+geom_point()
g1+geom_smooth(method="lm")
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3.4.1 Prediction intervals

There is another way to look at uncertainty. If we know the value for tannin, where would we expect a single
measured value for growth to lie. Notice that this is different. The confidence bands show where the mean
value migh lie if we measured growth many times. But in this case we want to know where we might expect
a data point to fall. This is a much broader interval, and is based on the idea of theoretical normal curves
falling around the regression line with a standard deviation estimated from the data. We cut off the tails of
these curves.
plot(growth~tannin)
x<-seq(min(tannin),max(tannin),length=1000)
matlines(x,predict(mod,list(tannin=x),interval="prediction"))
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3.4.2 Diagnostics

It is not enough to simply fit a regression line, or any other model. We have to justify our choice of model
and convince those who might use it that the assumptions have been adequately met. The question of how
close the data are to meeting the assumptions requires model diagnostics.

The basic assumptions for regression

• Normally distributed errors
• Identically distributed errors over the range (homogeneity of variance)
• No undue influence of points with high leverage
• An underlying linear relationship
• Independent errors

In this rather artificial example all the assumptions are met. However real ecological data is rarely as simple
as this. In order to justify the use of a regression model you must be able to show that the assumptions are
not seriously violated. We will come on to what “seriously”” means later.

3.4.2.1 Normality

It is important to remember that the assumption of normality applies to the residuals after a model has been
fitted. You do not test the for normality of the variable itself, as the relationship that you are modelling
influences the distribution of the variable. You can look at the distribution of the residuals by plotting a
histogram.
hist(residuals(mod),col="grey")
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Histogram of residuals(mod)
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This looks good enough. A slightly more sophisticated way of spotting deviations from normality is to use
a qqplot.

If we ask R to plot a fitted model, we actually get a set of diagnostic plots. There are six of these. By
default R will produce four of them. The qqplot is the second in the series. It is used as a visual check of
the normality assumption. If the assumption is met the points should fall approximately along the predicted
straight line.
plot(mod,which=2)
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Qqplots often have a sigmoid shape. This occurs when some of the extreme values fall further along the tail of
the normal distribution than expected. Providing this effect is slight it is not a problem. However deviations
from the line away from the extremes does show a major departure from the assumption. Interpretation of
QQplots requires some experience, but they can be very useful.

If you have doubts about your ability to interpret the plot you could try using a statistical test of normality.
shapiro.test(residuals(mod))

##
## Shapiro-Wilk normality test
##
## data: residuals(mod)
## W = 0.98794, p-value = 0.9926

The problem with this test is that it becomes more sensitive as the number of observations increase. Thus
you are more likely to get a p-value below 0.05 if you have a lot of data. However violations of normality
become much less serious as the number of observations increase. So it can be safe to ignore a significant test
result if the QQplot and histogram do not suggest major problems providing you have more than around
30 observations. If the histogram shows clear skew then you should think about a data transform, weighted
regression or using a generalised linear model. More about this later.

3.4.2.2 Homogeneity of variance

The assumption here is that the distance a point is likely to fall from the fitted line does not change along
the x values. This is very often violated. For example if the values represent counts of individuals it is
constrained to not fall below zero and will tend to be some function of the expected value. This results in
residuals that follow a poisson distribution or more likely, a negative binomial. The characteristic of both
these distributions is that the scatter increases as the expected value increases.

The following lines produce some data with this characteristic in order to illustrate the pattern.
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set.seed(5)

library(MASS)
x<-sample(0:10,20,rep=T)
y<-rnegbin(20,mu=x,theta=2)
plot(y~x)
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mod.negbin<-lm(y~x)

You should be able to spot a “fan” effect.

The third diagnostic plot in the series is used to see this effect more clearly. This plot shows the square root
of the standardised residuals plotted against the fitted values. Because the square root is used all the values
are positive. If there is an increasing (or decreasing) trend in the absolute size of the residuals it should show
up on the plot.
plot(mod.negbin,which=3)



38 CHAPTER 3. INTRODUCTION TO STATISTICAL MODELLING

0 5 10 15

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(y ~ x)

Scale−Location
20

8
18

The red line is meant to guide the eye, but you should look carefully at the pattern rather than the line
itself.

This is the pattern for the original model, that does not have a problem with heterogeneity of variance.
plot(mod,which=3,main="Growth model")
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If you are having difficulty interpreting the results you could try a test for the significance of the trend using
a correlation test between the variables shown on the diagonistic plot.
cor.test(sqrt(stdres(mod.negbin)),predict(mod.negbin))

## Warning in sqrt(stdres(mod.negbin)): NaNs produced

##
## Pearson's product-moment correlation
##
## data: sqrt(stdres(mod.negbin)) and predict(mod.negbin)
## t = 4.8093, df = 7, p-value = 0.001945
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5071470 0.9737071
## sample estimates:
## cor
## 0.8761687
cor.test(sqrt(stdres(mod)),predict(mod))

## Warning in sqrt(stdres(mod)): NaNs produced

##
## Pearson's product-moment correlation
##
## data: sqrt(stdres(mod)) and predict(mod)
## t = -0.50019, df = 2, p-value = 0.6666
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9803574 0.9236405
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## sample estimates:
## cor
## -0.3334484

The same sort of caveats apply to the literal interpretation of this test as a decision rule as the normality
test. Although most violations of homogeneity of variance have to be taken seriously, large data sets may
show statistically significant, but inconsequential violations.

3.4.2.3 Leverage

In the artificial example provided by Crawley all the points are equally spaced along the x axis. This is the
“classic” form for a regression and prevents problems with leverage. However in ecology we often have to
analyse data that does not have this property. Some of the x values on a scatterplot may fall a long way
from the centre of the distribution. Such points potentially could have an excessive influence on the form of
the fitted model.

The influence a point has on the regression is a function of leverage and distance from a line fitted using all
the other points.
knitr::include_graphics("figs/leverage.png")

To illustrate this let’s add a point to the data at a high tannin density and assume that zero growth was
measured at this value. How much does this new point influence the model?
tannin<-c(tannin,15)
growth<-c(growth,0)

We can plot the new data and show the effect of this one point on the regression line. It is shown in red.
new.mod<-lm(growth~tannin)
plot(growth~tannin)
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lines(tannin,predict(mod,list(tannin)))
lines(tannin,predict(new.mod,list(tannin)),col=2)

0 5 10 15

0
2

4
6

8
10

12

tannin

gr
ow

th

This data point has shifted the regression quite a lot due to a combination of its distance from the others
(which gives it high leverage) and the fact that it lies a long way from the fitted line (high residual deviation).
These two effects are captured by a quantity known as Cook’s distance.

The diagnostic plot shows leverage on the x axis and standardised residuals on the y axis. Large residuals
with low leverage do not affect the model, so the safe area with low values for Cook’s distance (below 1)
forms a funnel shape. Points falling outside this “safe area” can be flagged up.

There are no problem points in the original model.
plot(mod,which=5)
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However the point that we added with both a high leverage and a high deviation from the original model
shows up clearly when we diagnose the model with this point included.
plot(new.mod,which=5)
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Another way of spotting this influential points is by looking at Cook’s distance directly. Values over 1 are
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typically considered to be extreme.
plot(new.mod,which=4)
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3.4.3 Lack of independence

The value and sign of the residual deviation should not be related in any way to that of the previous point.
If residual values form “clusters” on one side of the line or another it is a sign of lack of independence. There
are two causes of this. The most serious is intrinsic temporal or spatial autocorrelation. This is discussed in
the next section. A less serious matter is that the shape of the model is not appropriate for the data. We
can see this in the last example. While the strait line might have been OK for the range of data originally
given by Crawley, a straight line is a poor model when an additional data point is added at a high tannin
level. At some point tannin stops all growth, so the underlying model must be asymptotic. Thus the model
with the extra point has correlation in the raw residuals. High tannin values have positive residual deviation
as a result of the poor fit of the model. This can be seen by using the first diagnostic plot that R produces.
plot(new.mod, which=1)
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A common way of testing for lack of independence is the Durbin Watson test for serial autocorrelation.
library(lmtest)
dwtest(growth~tannin)

##
## Durbin-Watson test
##
## data: growth ~ tannin
## DW = 2.0168, p-value = 0.3679
## alternative hypothesis: true autocorrelation is greater than 0

3.4.3.1 Putting it all together

If you just ask R to plot a model you get all four plots. With some practice these should help you spot
problems that need attention. Notice that to get four plots on one page you use par(mfcol=c(2,2)).
par(mfcol=c(2,2))
plot(mod)
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3.4.4 Violations of assumptions

What do you do if your diagnostic analysis shows that there is a problem with the model? The first thing
to realise is that all models are approximations of reality. As the statistician G.E. Box famously stated “All
models are wrong … but some are useful.” If journal editors and referees only admitted papers which used
the “correct” model ecological publishing would stop in its tracks. The important point to be aware of is
that not all violations of the assumptions are equally serious. Almost all of them can be handled by more
advanced modelling, but sometimes it is simply enough to point out that a minor violation was noticed, but
it was not considered serious enough to prevent further analysis, together with a clearly stated justification.

Normality of the residuals: This is considered to be the least important assumption of the model. Slight
deviations from normality will not usually affect the conclusions drawn. Furthermore some influential authors,
eg Sokal and Rolf, state that the central limit theorem means that the assumption can safely be ignored for
large (n>30) samples. However, be careful with this, as the assumption is that the residuals are non-normal,
but homogeneous. This is unlikely to occcur.

Fixed values of the independent variable: This assumption is in fact nearly always violated in ecological
studies. We never measure anything without error. The main point to be aware of is that it is error relative
to the range that causes an issue. So, if we measure a variable such as tree height with an accuracy of 10cm
and the range of values falls between 5m and 20m there is no problem. However if the range of heights were
to be only between 10m and 11m an issue may arise. You should always aim to have a large range of values
for the explanatory variable with respect to measurement errors.

Homogeneity of variance: Violations of this assumption can be quite serious. However you should be aware
that fixing the problem using techniques such as weighted regression will not affect the slope of the regression
line. It will affect the p-values (making them larger) and confidence intervals (making them wider). If the
p-value from the uncorrected model is very small (p<0.001) then a correction for heterogeneity of variance
is unlikely to result in a loss of significance. If the p-value is close to the conventional cut off (p<0.05) then
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the correction will almost certainly change your conclusions. In some cases the apparent heterogenity is the
result of outliers that need removal. Doing this will of course change the slope.

Incorrect model form: A regression is a straight line. In many ecological situations the true responses take
the form of a curve of some kind. Asymptotes are very commonly predicted both from theory and “common
sense”. For example, adding more nitrogen fertilizer beyond a certain point will not produce any more
growth. The biggest problem for regression in these circumstances is not that the model does not fit. It may
approximate quite well to one part of the curve. The issue is that the functional form is misleading and does
not represent the underlying process.

Influential outliers: We have seen that an outlier does not necessarily influence the regression unless it also
has high leverage. You have to think carefully before simply removing these points. If points at the extreme
ends of the x axis have high residual values it may be that the model is badly formed. We have seen the
potential for this in the example above. In this case you may want to restrict a linear regression to the
linear part of the relationship and remove data at the ends. Flexible models such as GAMs which we will
see later can deal with the issue. You may also use a data transformation to pull the extreme values in. It
may well turn out that the issue simply is due to mistaken measurements, in which case the extreme values
are rejected after checking. There are also other methods to formally handle the problem such as robust
regression.

Independence of the errors: This is the big issue. Violations of this assumption are always serious. The main
problem is that if observations are not independent the model is claiming many more degrees of freedom
(replication) than is justified. This means that the model cannot be generalised. The issue affects many,
if not all, ecological studies to some extent. Measurements are rarely truly independent from each other
in space and time. The issue affects the interpetation of the p-value and confidence intervals of the model.
While the model may still be suitable for prediction within its sample space it will not generalise beyond it.
In the next class we will look at an example in detail that may help to clarify this.

3.5 Exercises

1. Climate data

When analysing time series it can be very important to take into account serial autocorrelation. However
if serial autocorrelation is not particularly strong simple regression analysis can provide reliable insight
regarding trends.

The following data are taken from the UK Meterological office. They represent total precipitation and mean
monthly temperatures averaged over climate stations in England. Is there any evidence of trends?
Temp<-read.csv("https://tinyurl.com/aqm-data/Temp.csv")
Prec<-read.csv("https://tinyurl.com/aqm-data/Prec.csv")

3.6 Some “data wrangling”

There are now many different ways in R to reshape data frames into consistent formats. The new “tidyr”
and dplyr are becoming increasingly popular. A simple way of stacking many columns into two (variable and
value) is provided by the reshape package. The melt function takes the original data frame and arguments
defining “id” variables and “measurement” variables.
library(reshape2)
Temp2<-melt(Temp[,3:15],id="Year")
str(Temp2)

## 'data.frame': 1236 obs. of 3 variables:
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## $ Year : int 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 ...
## $ variable: Factor w/ 12 levels "JAN","FEB","MAR",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ value : num 3.2 3.4 3.3 3.9 2.9 3.5 6.9 1.2 3.3 2.5 ...
head(Temp2)

## Year variable value
## 1 1910 JAN 3.2
## 2 1911 JAN 3.4
## 3 1912 JAN 3.3
## 4 1913 JAN 3.9
## 5 1914 JAN 2.9
## 6 1915 JAN 3.5

All the months can now be plotted on a single figure using ggplot2.
g0<-ggplot(Temp2,aes(x=Year,y=value))
g0+geom_point()+geom_smooth(method="lm")+facet_wrap("variable")
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3.7 One way to run multiple analyses

Once the data are in long format it is fairly easy to loop through the factor levels and run a separate analysis
for each month. Note that the value of the factor is used to subset the data. Then within the loop the same
code is run multiple times. To include output in a knitted document you need to explicitly tell R to print
the results.
for(i in levels(Temp2$variable))
{
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d<-subset(Temp2,Temp2$variable==i)
mod<-lm(data=d,value~Year)
print(i)
print(anova(mod))
print(summary(mod))

}

## [1] "JAN"
## Analysis of Variance Table
##
## Response: value
## Df Sum Sq Mean Sq F value Pr(>F)
## Year 1 4.071 4.0706 1.3876 0.2416
## Residuals 101 296.298 2.9336
##
## Call:
## lm(formula = value ~ Year, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9279 -0.8244 0.1514 1.2828 3.5863
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9.497250 11.132331 -0.853 0.396
## Year 0.006686 0.005676 1.178 0.242
##
## Residual standard error: 1.713 on 101 degrees of freedom
## Multiple R-squared: 0.01355, Adjusted R-squared: 0.003785
## F-statistic: 1.388 on 1 and 101 DF, p-value: 0.2416
##
## [1] "FEB"
## Analysis of Variance Table
##
## Response: value
## Df Sum Sq Mean Sq F value Pr(>F)
## Year 1 2.62 2.6165 0.7436 0.3906
## Residuals 101 355.40 3.5188
##
## Call:
## lm(formula = value ~ Year, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.7250 -0.9115 0.1946 1.3608 3.1445
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.712280 12.192223 -0.551 0.583
## Year 0.005361 0.006217 0.862 0.391
##
## Residual standard error: 1.876 on 101 degrees of freedom
## Multiple R-squared: 0.007308, Adjusted R-squared: -0.00252
## F-statistic: 0.7436 on 1 and 101 DF, p-value: 0.3906
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##
## [1] "MAR"
## Analysis of Variance Table
##
## Response: value
## Df Sum Sq Mean Sq F value Pr(>F)
## Year 1 15.482 15.482 7.964 0.005747 **
## Residuals 101 196.345 1.944
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## lm(formula = value ~ Year, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3082 -0.9820 0.1701 0.9679 3.4048
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -19.975905 9.062175 -2.204 0.02977 *
## Year 0.013040 0.004621 2.822 0.00575 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.394 on 101 degrees of freedom
## Multiple R-squared: 0.07309, Adjusted R-squared: 0.06391
## F-statistic: 7.964 on 1 and 101 DF, p-value: 0.005747
##
## [1] "APR"
## Analysis of Variance Table
##
## Response: value
## Df Sum Sq Mean Sq F value Pr(>F)
## Year 1 11.266 11.2657 9.023 0.003362 **
## Residuals 101 126.104 1.2486
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## lm(formula = value ~ Year, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5791 -0.6621 -0.0448 0.6434 3.2429
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.011848 7.262512 -1.929 0.05650 .
## Year 0.011123 0.003703 3.004 0.00336 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.117 on 101 degrees of freedom
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## Multiple R-squared: 0.08201, Adjusted R-squared: 0.07292
## F-statistic: 9.023 on 1 and 101 DF, p-value: 0.003362
##
## [1] "MAY"
## Analysis of Variance Table
##
## Response: value
## Df Sum Sq Mean Sq F value Pr(>F)
## Year 1 1.797 1.7970 1.7804 0.1851
## Residuals 101 101.944 1.0093
##
## Call:
## lm(formula = value ~ Year, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.42442 -0.62451 -0.02886 0.67880 1.89335
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.257157 6.529832 0.346 0.730
## Year 0.004443 0.003329 1.334 0.185
##
## Residual standard error: 1.005 on 101 degrees of freedom
## Multiple R-squared: 0.01732, Adjusted R-squared: 0.007593
## F-statistic: 1.78 on 1 and 101 DF, p-value: 0.1851
##
## [1] "JUN"
## Analysis of Variance Table
##
## Response: value
## Df Sum Sq Mean Sq F value Pr(>F)
## Year 1 3.466 3.4664 3.7702 0.05496 .
## Residuals 101 92.860 0.9194
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## lm(formula = value ~ Year, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.50768 -0.57619 0.01828 0.61019 2.46764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.740239 6.232143 0.279 0.781
## Year 0.006170 0.003178 1.942 0.055 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9589 on 101 degrees of freedom
## Multiple R-squared: 0.03599, Adjusted R-squared: 0.02644
## F-statistic: 3.77 on 1 and 101 DF, p-value: 0.05496
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##
## [1] "JUL"
## Analysis of Variance Table
##
## Response: value
## Df Sum Sq Mean Sq F value Pr(>F)
## Year 1 8.144 8.1436 6.5637 0.01188 *
## Residuals 101 125.311 1.2407
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## lm(formula = value ~ Year, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.25628 -0.83798 -0.07239 0.64977 3.15598
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.827188 7.239644 -0.391 0.6970
## Year 0.009457 0.003691 2.562 0.0119 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.114 on 101 degrees of freedom
## Multiple R-squared: 0.06102, Adjusted R-squared: 0.05172
## F-statistic: 6.564 on 1 and 101 DF, p-value: 0.01188
##
## [1] "AUG"
## Analysis of Variance Table
##
## Response: value
## Df Sum Sq Mean Sq F value Pr(>F)
## Year 1 11.613 11.6132 9.2353 0.003023 **
## Residuals 101 127.005 1.2575
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## lm(formula = value ~ Year, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.56001 -0.78660 -0.03558 0.62243 2.98701
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.568975 7.288419 -0.901 0.36958
## Year 0.011294 0.003716 3.039 0.00302 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.121 on 101 degrees of freedom
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## Multiple R-squared: 0.08378, Adjusted R-squared: 0.07471
## F-statistic: 9.235 on 1 and 101 DF, p-value: 0.003023
##
## [1] "SEP"
## Analysis of Variance Table
##
## Response: value
## Df Sum Sq Mean Sq F value Pr(>F)
## Year 1 9.92 9.9203 9.6765 0.002426 **
## Residuals 101 103.54 1.0252
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## lm(formula = value ~ Year, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5740 -0.6080 0.1034 0.6420 2.7573
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7.100940 6.580889 -1.079 0.28315
## Year 0.010438 0.003355 3.111 0.00243 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.013 on 101 degrees of freedom
## Multiple R-squared: 0.08743, Adjusted R-squared: 0.0784
## F-statistic: 9.677 on 1 and 101 DF, p-value: 0.002426
##
## [1] "OCT"
## Analysis of Variance Table
##
## Response: value
## Df Sum Sq Mean Sq F value Pr(>F)
## Year 1 16.922 16.9225 11.95 0.0008011 ***
## Residuals 101 143.030 1.4161
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## lm(formula = value ~ Year, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.05175 -0.65856 0.02091 0.60267 3.11619
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -16.704930 7.734564 -2.160 0.033156 *
## Year 0.013633 0.003944 3.457 0.000801 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##
## Residual standard error: 1.19 on 101 degrees of freedom
## Multiple R-squared: 0.1058, Adjusted R-squared: 0.09694
## F-statistic: 11.95 on 1 and 101 DF, p-value: 0.0008011
##
## [1] "NOV"
## Analysis of Variance Table
##
## Response: value
## Df Sum Sq Mean Sq F value Pr(>F)
## Year 1 22.704 22.7043 15.115 0.0001812 ***
## Residuals 101 151.714 1.5021
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## lm(formula = value ~ Year, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.96830 -0.60514 0.06336 0.76071 2.77387
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -24.676785 7.965901 -3.098 0.002525 **
## Year 0.015791 0.004062 3.888 0.000181 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.226 on 101 degrees of freedom
## Multiple R-squared: 0.1302, Adjusted R-squared: 0.1216
## F-statistic: 15.11 on 1 and 101 DF, p-value: 0.0001812
##
## [1] "DEC"
## Analysis of Variance Table
##
## Response: value
## Df Sum Sq Mean Sq F value Pr(>F)
## Year 1 0.02 0.01993 0.0084 0.927
## Residuals 101 238.63 2.36263
##
## Call:
## lm(formula = value ~ Year, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7346 -0.9670 0.3108 0.9989 3.2010
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.3941682 9.9903576 0.340 0.735
## Year 0.0004679 0.0050939 0.092 0.927
##
## Residual standard error: 1.537 on 101 degrees of freedom
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## Multiple R-squared: 8.352e-05, Adjusted R-squared: -0.009817
## F-statistic: 0.008436 on 1 and 101 DF, p-value: 0.927

This is “quick and dirty” as no diagnostics have been run for each regresson. In order to fully justify any
interesting results you would need to do more work than this. In reality a correct analysis of time series
data should include an investigation of serial autocorrelation, amongst other elements. We’ll be looking at
this later in the course.

2.. Recall that in the primer we looked at the relationship between measurements on mussel shell length and
body tissue volume in ml. Load the data and analyse them using linear regression.
mussels<-Prec<-read.csv("https://tinyurl.com/aqm-data/mussels.csv")
attach(mussels)

## The following objects are masked from mussels (pos = 61):
##
## BTVolume, Lshell, Site
library(ggplot2)
theme_set(theme_bw())
library(multcomp)



Chapter 4

Some theory on the general linear
model

Mathematically the equation for a one way anova is equivalent to this too. If you think about a situation
in which instead of a single value for x being multipled by a single coefficient we have a matrix of values
representing which level of a factor is being taken into account when calculating a value of y we have an
equation with a parameter for each factor level.

4.1 Calculating the sum of squares

In both cases the formula that is dropped in to the call to fit a linear model in R is similar. The difference
is that one way ANOVA uses a factor to predict fitted values and calculate residuals whereas regression uses
a numerical variable.

In order to demonstrate the fundamental similarity between the two models we will set up some simulated
data and then calculate the sum of squares from first principles.

4.1.0.1 ANOVA

Let’s make up a predictor variable. This is a factor with three levels, call them A, B and C. Now, let’s
assume that the fitted values (in other words the deterministic pattern of response to the three levels of this
factor) are mean values of 10, 15 and 20. These are the expected responses if there were no variability apart
from that between groups.
set.seed(1)
predictor<-as.factor(rep(c("A","B","C"),each=10))
fitted<-rep(c(10,12,20),each=10)

Of course, there is going to be variability within each group. So let’s add this in. We will assume that the
variability can be modelled as a normal distribution with mean zero and standard deviation of 5.

So the results we actually get are derived by adding these two components together.
residuals<-rnorm(30,mean=0,sd=5)
results<-fitted+residuals
d<-data.frame(predictor,results)
boxplot(results~predictor,data=d)

55
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Of course, because this was a simulation experiment the actual means will be slightly different to the invested
values. We can set up a data frame with true fitted and residual values like this.
mod<-lm(results~predictor,data=d)
d<-data.frame(predictor,results,fitted=fitted(mod),residuals=residuals(mod))
head(d)

## predictor results fitted residuals
## 1 A 6.867731 10.66101 -3.7932830
## 2 A 10.918217 10.66101 0.2572027
## 3 A 5.821857 10.66101 -4.8391570
## 4 A 17.976404 10.66101 7.3153901
## 5 A 11.647539 10.66101 0.9865250
## 6 A 5.897658 10.66101 -4.7633558

4.1.0.2 The numerator sum of squares

OK, so where do the numbers in the Anova table come from? The first step is to understand that the
numerator sum of squares represents all the deterministic variability in the system. This is the variability
attributable to differences between groups. The sum of squares is the sum of the squared deviations around
the mean. But, which mean? In this case it is the overall mean value for the respnse.

So, look at the boxplot again, but this time remove the variability and just plot the means. We can show
the difference for each mean from the grand mean using arrows.
boxplot(fitted~predictor,data=d)
abline(h=mean(results),lwd=3,col=2)
arrows(1,10.66,1,mean(results),code=3)
arrows(2,13.24,2,mean(results),code=3)
arrows(3,19.33,3,mean(results),code=3)
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OK, so for each mean there are 10 fitted values. The sum of squares is simply
nsqrs<-(d$fitted-mean(results))^2
nsumsqrs<-sum(nsqrs)

4.1.0.3 Denominator sum of squares

The denominator sum of squares in an Anova table represents all the variability that can be attributed to
the stochastic component of the model. In other words, the residual variablity. We produced that when
simulating the data. The values are simply the residuals once the means for each group have been subtracted.
g0<-ggplot(d,aes(x=predictor,y=results))
g0+geom_point(pch=21,bg=2)+stat_summary(fun.y=mean,geom="point",size=4)
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So each residual is the distance between the red points and the large black point representing the mean for
that group.
dsqrs<-d$residuals^2
dsumsqrs<-sum(dsqrs)

mod<-lm(results~predictor)
anova(mod)

## Analysis of Variance Table
##
## Response: results
## Df Sum Sq Mean Sq F value Pr(>F)
## predictor 2 396.36 198.18 8.9192 0.001062 **
## Residuals 27 599.93 22.22
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
nsumsqrs

## [1] 396.3639
dsumsqrs

## [1] 599.9315

The degrees of freedom for the munerator sum of squares are the number of free parameters in the model.
This is one less than the number of groups because we need to calculate the grand mean from the data, and
thus use up degree of freedom. In order to calculate the residuals we need to calculate three means in this
case, so the denominator degree of freedom is the total sample size minus three.
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4.1.1 Regression

The set up for regression is, in effect, identical, apart from the fact that the fitted values are continuous
rather than group means. So if we invent some data
x<-11:40
y<-10+x*2+rnorm(30,0,10)
plot(y~x)
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mod<-lm(y~x)
d<-data.frame(x,y,fitted=fitted(mod),residuals=residuals(mod))
head(d)

## x y fitted residuals
## 1 11 45.58680 32.84861 12.738183
## 2 12 32.97212 34.88166 -1.909533
## 3 13 39.87672 36.91470 2.962016
## 4 14 37.46195 38.94774 -1.485794
## 5 15 26.22940 40.98079 -14.751383
## 6 16 37.85005 43.01383 -5.163776
plot(y~x)
points(x,fitted(mod),pch=21,bg=2)
abline(h=mean(y),lwd=4,col=3)

arrows(x,fitted(mod),x,mean(y),code=3)
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nsqrs<-(d$fitted-mean(y))^2
nsumsqrs<-sum(nsqrs)

4.1.2 Residuals

plot(y~x)
points(x,fitted(mod),pch=21,bg=2)
arrows(x,fitted(mod),x,y,code=2)
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dsqrs<-d$residuals^2
dsumsqrs<-sum(dsqrs)

mod<-lm(y~x)
anova(mod)

## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 9289.5 9289.5 141.99 1.759e-12 ***
## Residuals 28 1831.9 65.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
nsumsqrs

## [1] 9289.517
dsumsqrs

## [1] 1831.902

4.2 Where does R squared (coefficient of determination) come
from?

The “explained variability” in the data is often reported using R squared. High values suggest that a large
proportion of the variability is “explained” by the model, whether the model is a regression or an ANOVA.
Where does that fit in? Well the total sum of squares is the sum of all the squared distances that we have
calculated.

If we divide the sum of squares attributable to the model by the total we get the proportion of the variability
attributable to the model.
totsumsqrs<-nsumsqrs+dsumsqrs
nsumsqrs/totsumsqrs

## [1] 0.8352817

We can see that this is the same as R provides by asking for a summary.
summary(mod)

##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.751 -5.120 -1.579 5.365 18.129
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.4851 4.5945 2.282 0.0303 *
## x 2.0330 0.1706 11.916 1.76e-12 ***
## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.089 on 28 degrees of freedom
## Multiple R-squared: 0.8353, Adjusted R-squared: 0.8294
## F-statistic: 142 on 1 and 28 DF, p-value: 1.759e-12

4.3 Model assumptions

Assumptions of any linear model are the same.

• Normally distributed errors
• Identically distributed errors over the range (homogeneity of variance)
• Independent errors

In the case of regression we can also state that it is assumed that there is

• No undue influence of points with high leverage (regression)
• An underlying linear relationship (regression)

If these assumptions are not met then the p-values and R squared calculations based on the sums of squares
may potentially be misleading. So testing assumptions critically is an important part of using and interpret-
ing linear models. The best diagnostic tests involve looking carefully at the data rather than running an
automated decision tool. Minor violations may be acceptable in some circumstances.

4.4 Some practice using linear models

The best way to become comfortable fitting models in R is to fit them several times until the procedure
becomes routine.

Let’s look at some classic data on the morphological characteristics of iris flowers. This is a useful data set
to get to know, as it is very frequently used in the R literature to illustrate a wide range on more advanced
techniques, including machine learning. We can load the data set into memory with the data command. For
consistency I’ll then call it d.
data("iris")
d<-iris
DT:::datatable(d)
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Show	 10 	entries Search:

Showing	1	to	10	of	150	entries Previous 1 2 3 4 5 … 15 Next

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

7 4.6 3.4 1.4 0.3 setosa

8 5 3.4 1.5 0.2 setosa

9 4.4 2.9 1.4 0.2 setosa

10 4.9 3.1 1.5 0.1 setosa

So there are three (closely related) species with measurements made on petals and sepals.

4.5 One way Anova

So, a reminder. The first step in any analysis is to look at the data. So if we want to look at differences in
sepal width between species we can plot the data as boxplots.
g0<-ggplot(d,aes(x=Species,y=Sepal.Width))
g0 +geom_boxplot()
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4.5.1 Diagnostics

The boxplots allow basic diagnostic tests for one way anova. Using them we can test for

• Normally distributed errors
• Identically distributed errors over the range (homogeneity of variance)

Look carefully at the boxplots. Do they look approximately symetrical? Is there a clear pattern of outliers
either above or below the box? If the answers are yes and no, then the data may be approximately normally
distributed.

Look at the width of the boxes for each group. Are they similar? If the answer is yes then heterogenity of
variance is not likely to be a major problem.

4.6 Statistical inference

The next step is to produce confidence intervals.
g0 +stat_summary(fun.y=mean,geom="point") + stat_summary(fun.data=mean_cl_normal,geom="errorbar")
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Remember that confidence intervals are a function of sample size. So if there are differences in the number
of measurements in each group this may result in some showing narrower confidence intervals even if the
underlying variances are similar.

4.7 Fitting a linear model

There are two commonly forms of syntax for fitting a one way anova in R. We can use either oav, or lm.
The aov syntax is actually just a wrapper to lm. Lm stands for linear model. The syntax is identical to that
used for regression, but the second variable in the formula is a factor.
mod<-lm(data=d,Sepal.Width~Species)
anova(mod)

## Analysis of Variance Table
##
## Response: Sepal.Width
## Df Sum Sq Mean Sq F value Pr(>F)
## Species 2 11.345 5.6725 49.16 < 2.2e-16 ***
## Residuals 147 16.962 0.1154
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

You should be able to interpret all the elements in the output now.
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4.8 Diagnostics

A qqplot can be the most useful of the diagnistic plots for anova. This will help in deciding if the residuals
are normally distributed. Hetereogeneity of variance is best spotted using the boxplots.
plot(mod,which=2)
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If the points more or less fall along the diagonal this can be taken as a good indication that the assumption
of normality is met. Minor deviations from normality are rarely important, and taken overall the assumption
of “exact” normality of residuals is not the most important. Minor deviations will not invalidate the model.

You should also be very careful before talking about an “invalid” model if there are minor violations. The
underlying pattern may be quite clearly shown through almost any reasonable analtsis. Finding the “best”
model involves refining the way in which p-values and confidence intervals are calculated to ensure that
they are justifiable. If p-values are extremely small, then refinement may be unlikely to change the overall
significance of the result. If p-values are close to the traditional cut off point (0.05) then the significance
of the result may be questionable, and changes in the way a model is fitted to the data may change the
conclusions.

4.9 Treatment contrasts using summary

If we ask for a summary of a one way anova the default in R is to provide a table with treatment contrasts.
Treatment constrasts take the first level of the factor as the reference level.
summary(mod)

##
## Call:
## lm(formula = Sepal.Width ~ Species, data = d)
##
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## Residuals:
## Min 1Q Median 3Q Max
## -1.128 -0.228 0.026 0.226 0.972
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.42800 0.04804 71.359 < 2e-16 ***
## Speciesversicolor -0.65800 0.06794 -9.685 < 2e-16 ***
## Speciesvirginica -0.45400 0.06794 -6.683 4.54e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3397 on 147 degrees of freedom
## Multiple R-squared: 0.4008, Adjusted R-squared: 0.3926
## F-statistic: 49.16 on 2 and 147 DF, p-value: < 2.2e-16

4.10 Changing the reference leval

If the anova represented an experiment with some control group, this would be the natural choice as the
reference level. We can set alternative reference levels for the summary table.
contrasts(d$Species)<-contr.treatment(levels(d$Species),base=3)
mod<-lm(data=d,Sepal.Width~Species)
summary(mod)

##
## Call:
## lm(formula = Sepal.Width ~ Species, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.128 -0.228 0.026 0.226 0.972
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.97400 0.04804 61.908 < 2e-16 ***
## Speciessetosa 0.45400 0.06794 6.683 4.54e-10 ***
## Speciesversicolor -0.20400 0.06794 -3.003 0.00315 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3397 on 147 degrees of freedom
## Multiple R-squared: 0.4008, Adjusted R-squared: 0.3926
## F-statistic: 49.16 on 2 and 147 DF, p-value: < 2.2e-16

4.11 Multiple comparisons

In an observational study we will often want to look at the differences between pairs of groups. The “General
Linear Hypothesis” from the multcomp package is useful for this.
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library(multcomp)
#plot(glht(mod, linfct = mcp(Species = "Tukey"))) ## Have to adjust the margins to show this clearly
summary(glht(mod, linfct = mcp(Species= "Tukey")))

##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lm(formula = Sepal.Width ~ Species, data = d)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## versicolor - setosa == 0 -0.65800 0.06794 -9.685 < 1e-04 ***
## virginica - setosa == 0 -0.45400 0.06794 -6.683 < 1e-04 ***
## virginica - versicolor == 0 0.20400 0.06794 3.003 0.00877 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

4.12 Scale location plot

This can be useful for spotting heterogeneity of variance. If heterogeniety of variance is an issue you are
likely to see a trend towards larger values on the y axis as the fitted value increases.
plot(mod,which=3)
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4.13 Example of heterogeniety

set.seed(5)
library(MASS)
x<-sample(0:10,20,rep=T)
y<-rnegbin(20,mu=x,theta=2)
plot(y~x)
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mod.negbin<-lm(y~x)
plot(mod.negbin,which=3)
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4.14 Exercises

1. Try fitting regressions to different variables within the iris data set.

2. The statistician Francis Anscombe invented four data sets in order to demonstrate some of the pit-
falls involved in running regression analysis blind (without either looking at the data or carrying out
diagnostics).The four data sets are provided in R for illustration.

data(anscombe)
str(anscombe)

## 'data.frame': 11 obs. of 8 variables:
## $ x1: num 10 8 13 9 11 14 6 4 12 7 ...
## $ x2: num 10 8 13 9 11 14 6 4 12 7 ...
## $ x3: num 10 8 13 9 11 14 6 4 12 7 ...
## $ x4: num 8 8 8 8 8 8 8 19 8 8 ...
## $ y1: num 8.04 6.95 7.58 8.81 8.33 ...
## $ y2: num 9.14 8.14 8.74 8.77 9.26 8.1 6.13 3.1 9.13 7.26 ...
## $ y3: num 7.46 6.77 12.74 7.11 7.81 ...
## $ y4: num 6.58 5.76 7.71 8.84 8.47 7.04 5.25 12.5 5.56 7.91 ...
d<-anscombe

We can fit models to x1,y1, x2,y2 etc
mod1<-lm(data=d,y1~x1)
mod2<-lm(data=d,y2~x2)
mod3<-lm(data=d,y3~x3)
mod4<-lm(data=d,y4~x4)

The summaries of the models look very similar.
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summary(mod1)

##
## Call:
## lm(formula = y1 ~ x1, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.92127 -0.45577 -0.04136 0.70941 1.83882
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0001 1.1247 2.667 0.02573 *
## x1 0.5001 0.1179 4.241 0.00217 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
summary(mod2)

##
## Call:
## lm(formula = y2 ~ x2, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9009 -0.7609 0.1291 0.9491 1.2691
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.001 1.125 2.667 0.02576 *
## x2 0.500 0.118 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
summary(mod3)

##
## Call:
## lm(formula = y3 ~ x3, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1586 -0.6146 -0.2303 0.1540 3.2411
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0025 1.1245 2.670 0.02562 *
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## x3 0.4997 0.1179 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
summary(mod4)

##
## Call:
## lm(formula = y4 ~ x4, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.751 -0.831 0.000 0.809 1.839
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0017 1.1239 2.671 0.02559 *
## x4 0.4999 0.1178 4.243 0.00216 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297
## F-statistic: 18 on 1 and 9 DF, p-value: 0.002165

However only one of these data sets is really suitable for linear regression. Run the appropriate diagnostics
to find out which.

3. Geek of the week data

For fun I have downloaded spotify detials on tracks from three bands.
library(spotifyr)
id <- "df4b4ced508a4ac39ea5357c3ed2d477"
secret<-"48e05067ee3e47a4b9fcedea97ffa5ae"

Sys.setenv(SPOTIFY_CLIENT_ID = id)
Sys.setenv(SPOTIFY_CLIENT_SECRET = secret)

library(spotifyr)
d1 <- data.frame(artist="Oasis",get_artist_audio_features('Oasis'))
d2 <- data.frame(artist="Blur",get_artist_audio_features('blur'))
d3 <- data.frame(artist="Arctic Monkeys",get_artist_audio_features('Arctic Monkeys'))
d<-rbind(d1,d2,d3)
d$track_name<-gsub("Remastered","",d$track_name)
d$album_name<-gsub("(Remastered)","",d$album_name)
library(dplyr)
d<-d[,c(1,3,8,10:21,24)]
write.csv(d,"/home/aqm/data/spotify.csv")

These data are rather like the Iris data in general format.
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d<-read.csv("/home/aqm/data/spotify.csv")
str(d)

## 'data.frame': 381 obs. of 17 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ artist : Factor w/ 3 levels "Arctic Monkeys",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ album_name : Factor w/ 27 levels "13","All The People... Blur Live At Hyde Park 02/07/2009",..: 5 5 5 5 5 5 5 5 5 5 ...
## $ track_name : Factor w/ 376 levels "(Get Off Your) High Horse Lady",..: 82 204 190 279 154 310 108 94 33 15 ...
## $ danceability : num 0.312 0.367 0.327 0.214 0.355 0.389 0.399 0.426 0.486 0.366 ...
## $ energy : num 0.886 0.988 0.895 0.828 0.978 0.905 0.729 0.838 0.913 0.831 ...
## $ key : Factor w/ 12 levels "A","A#","B","C",..: 3 9 4 11 6 11 11 4 1 11 ...
## $ loudness : num -3.24 -1.07 -3.06 -2.66 -2.33 ...
## $ mode : Factor w/ 2 levels "major","minor": 2 1 1 1 1 1 1 1 1 1 ...
## $ speechiness : num 0.0427 0.0706 0.0476 0.0383 0.0596 0.0352 0.0333 0.0362 0.0394 0.0429 ...
## $ acousticness : num 7.32e-05 4.25e-03 1.34e-01 1.42e-02 6.57e-04 1.27e-01 1.26e-02 5.32e-02 1.22e-02 5.72e-03 ...
## $ instrumentalness: num 1.61e-04 7.58e-06 2.06e-03 1.61e-06 4.95e-03 0.00 3.24e-04 3.02e-06 4.98e-01 1.62e-03 ...
## $ liveness : num 0.0885 0.0486 0.385 0.161 0.448 0.382 0.368 0.0829 0.446 0.484 ...
## $ valence : num 0.251 0.327 0.295 0.388 0.19 0.315 0.181 0.182 0.308 0.339 ...
## $ tempo : num 80 135 148 170 137 ...
## $ duration_ms : int 462227 302600 439373 356600 262427 347400 412293 288600 313200 560000 ...
## $ track_popularity: int 0 0 0 0 0 0 0 0 0 0 ...

Which artist’s songs have the most energy? Is it sensible to test this statistically?
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Chapter 5

Fitting curves to data

In the previous class we have assumed that the underlying relationship between variables takes the form
of a straight line. However in ecology the relationship between variables can have more complex forms.
Sometimes the form can be predicted from theory. However we are often simply interested in finding a
model that describes the data well and provides insight into processes.

5.1 Data exploration

The data we will first look at is analysed by Zuur et al (2007) but here it has been modified slightly in order
to illustrate the point more clearly.

The data frame we will look at contains only two variables selected from a large number of measurements
taken on sediment cores from Dutch beaches. The response variable is the richness of benthic invertebrates.
The explanatory variable we are going to look at here is sediment grain size in mm. The data also contains
measurements on height from mean sea level and salinity.

5.1.1 Visualisation

library(ggplot2)

d<-read.csv("/home/aqm/course/data/marineinverts.csv")
DT::datatable(d)

75
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Show	 10 	entries Search:

Showing	1	to	10	of	45	entries Previous 1 2 3 4 5 Next

richness grain height salinity

1 0 450 2.255 27.1

2 2 370 0.865 27.1

3 8 192.5 1.19 29.6

4 13 194.5 -1.336 29.4

5 17 197 -1.334 29.6

6 10 200 -1.036 29.4

7 10 202 -0.684 29.4

8 9 205.5 0.82 29.6

9 19 205.5 0.061 29.6

10 8 211.5 0.635 29.6

The first step in any analysis should be to look at the data.

Base graphics are good enough for a quick figure at this stage.
attach(d)

## The following object is masked from hsurvey (pos = 5):
##
## height

## The following objects are masked from d (pos = 41):
##
## grain, height, richness, salinity

## The following objects are masked from d (pos = 57):
##
## grain, height, richness, salinity

## The following object is masked from hsurvey (pos = 72):
##
## height
plot(richness~grain)
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Or in ggplot
theme_set(theme_bw())
g0<-ggplot(data=d,aes(x=grain,y=richness))
g1<-g0+geom_point()
g1
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There seems to be a pattern of an intial steep decline in richness as grain size increases, followed by a plateau.
Let’s try fitting a linear regression to the data and plotting the results with confidence intervals.

Note This is not necessarily the correct analysis for these data. In fact there are many reasons why it is
clearly an incorrect way of modelling the relationship. We will explore this as the class progresses, and in
a later class we will revisit the data set in order to use a much better model. The exercise at this point is
for illustrative, didactic purposes. You should think about the reasons for not using a simple model at every
step, in order to understand why more advanced methods are needed.

Plotting confidence intervals using base graphics requires a few steps in base graphics, but you can see
explicitly that these are constructed using the model predictions.
mod<-lm(richness~grain)
plot(richness~grain)
x<-seq(min(grain),max(grain),length=100)
matlines(x,predict(mod,newdata=list(grain=x),interval="confidence"))

200 250 300 350 400 450

0
5

10
15

20

grain

ric
hn

es
s

It is, of course, usually much quicker and easier to use ggplots.
g2<-g1+geom_smooth(method="lm")
g2
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The relationship is modelled quite well by a straight line, but it does not look completely convincing. There
are two many points above the line on the left hand side of the figure and too many below on the right. If
look at the first diagnostic plot for the model this is also apparent. The residuals are correlated as a result
of the model not being of the correct form.

Look at the diagnostic plots.
anova(mod)

## Analysis of Variance Table
##
## Response: richness
## Df Sum Sq Mean Sq F value Pr(>F)
## grain 1 385.13 385.13 23.113 1.896e-05 ***
## Residuals 43 716.52 16.66
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mod)

##
## Call:
## lm(formula = richness ~ grain)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.8386 -2.0383 -0.3526 2.5768 11.6620
##
## Coefficients:
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## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.669264 2.767726 6.745 3.01e-08 ***
## grain -0.046285 0.009628 -4.808 1.90e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.082 on 43 degrees of freedom
## Multiple R-squared: 0.3496, Adjusted R-squared: 0.3345
## F-statistic: 23.11 on 1 and 43 DF, p-value: 1.896e-05
par(mfcol=c(2,2))
plot(mod)
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5.1.2 T values and significance in summary output

An element of the R output that you should be aware of at this point is the summary table. If you look at
this table you will see that for each parameter there is an estimate of its value together with a standard error.
The confidence interval for the parameter is approximately plus or minus twice the standard error. The T
value is a measure of how far from zero the estimated parameter value lies in units of standard error. So
generally speaking t values of 2 or more will be statistically significant. This may be useful, but it certainly
does not suggest that parameter is useful in itself. To evaluate whether a parameter should be included
requires taking a “whole model” approach.

Remember that a p-value only tells you how likely you would be to get the value of t (or any other statistic
with a known distribution such as an F value) if the null model were true. It doesn’t really tell you that
much directly about the model you actually have.
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5.1.3 Testing for curvilearity

We can check whether a strait line is a good representation of the pattern using the reset test that will have
a low p-value if the linear form of the model is not a good fit.
library(lmtest)
resettest(richness ~ grain)

##
## RESET test
##
## data: richness ~ grain
## RESET = 19.074, df1 = 2, df2 = 41, p-value = 1.393e-06

The Durbin Watson test which helps to confirm serial autocorrelation that may be the result of a misformed
model will often also be significant when residuals cluster on one side of the line.
dwtest(richness~grain)

##
## Durbin-Watson test
##
## data: richness ~ grain
## DW = 1.7809, p-value = 0.1902
## alternative hypothesis: true autocorrelation is greater than 0

In this case it was not, but this may be because there were too few data points.

5.2 Polynomials

The traditional method for modelling curvilinear relationships when a functional form of the relationship is
not assumed is to use polynomials. Adding quadratic, cubic or higher terms to a model gives it flexibility
and allows the line to adopt different shapes. The simplest example is a quadratic relationship which takes
the form of a parabola.

y = a + bx + cx2 + ϵ where ϵ = N(o, σ2)
x<-1:100
y<-10+2*x-0.02*x^2
plot(y~x,type="l")
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If the quadratic term has a small value the curve may look more like a hyperbola over the data range.
x<-1:100
y<-10+2*x-0.01*x^2
plot(y~x,type="l")
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We can add a quadratic term to the model formula in R very easily.

The syntax is lm(richness ~ grain+I(grain^2)).

The “I” is used to isolate the expression so that it is interpreted literally in mathematical terms. Notice that
we are still using lm, i.e. a general linear model. This is because mathematically the terms still enter in a
“linear” manner. So linear models can produce curves!



5.2. POLYNOMIALS 83

We canplot the predictions explicitly using base graphics.
mod2<-lm(richness~grain+I(grain^2))
plot(richness~grain)
x<-seq(min(grain),max(grain),length=100)
matlines(x,predict(mod2,newdata=list(grain=x),interval="confidence"))
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Or using ggplot.
g1+geom_smooth(method="lm",formula=y~x+I(x^2), se=TRUE)



84 CHAPTER 5. FITTING CURVES TO DATA

0

5

10

15

20

200 300 400

grain

ric
hn

es
s

anova(mod2)

## Analysis of Variance Table
##
## Response: richness
## Df Sum Sq Mean Sq F value Pr(>F)
## grain 1 385.13 385.13 29.811 2.365e-06 ***
## I(grain^2) 1 173.93 173.93 13.463 0.00068 ***
## Residuals 42 542.59 12.92
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mod2)

##
## Call:
## lm(formula = richness ~ grain + I(grain^2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.5779 -2.5315 0.2172 2.1013 8.3415
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 53.0133538 9.6721492 5.481 2.21e-06 ***
## grain -0.2921821 0.0675505 -4.325 9.19e-05 ***
## I(grain^2) 0.0004189 0.0001142 3.669 0.00068 ***
## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.594 on 42 degrees of freedom
## Multiple R-squared: 0.5075, Adjusted R-squared: 0.484
## F-statistic: 21.64 on 2 and 42 DF, p-value: 3.476e-07

We now have a higher value of R squared and a better fitting model.

But the shape does not look right. The quadratic is constrained in form and has started to rise at the high
end of the x axis. This does not make a great deal of sense.

We can give the model more flexibility by adding another term.
mod3<-lm(richness~grain+I(grain^2)+I(grain^3))
plot(richness~grain)
x<-seq(min(grain),max(grain),length=100)
matlines(x,predict(mod3,newdata=list(grain=x),interval="confidence"))
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g1+geom_smooth(method="lm",formula=y~x+I(x^2)++I(x^3), se=TRUE)
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anova(mod3)

## Analysis of Variance Table
##
## Response: richness
## Df Sum Sq Mean Sq F value Pr(>F)
## grain 1 385.13 385.13 42.542 7.820e-08 ***
## I(grain^2) 1 173.93 173.93 19.212 7.944e-05 ***
## I(grain^3) 1 171.42 171.42 18.936 8.768e-05 ***
## Residuals 41 371.17 9.05
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mod3)

##
## Call:
## lm(formula = richness ~ grain + I(grain^2) + I(grain^3))
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.5250 -1.8841 -0.2896 2.2259 7.9431
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.955e+02 3.373e+01 5.796 8.44e-07 ***
## grain -1.784e+00 3.474e-01 -5.134 7.27e-06 ***
## I(grain^2) 5.420e-03 1.153e-03 4.700 2.93e-05 ***



5.3. SPLINES 87

Figure 5.1: alt text

## I(grain^3) -5.386e-06 1.238e-06 -4.352 8.77e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.009 on 41 degrees of freedom
## Multiple R-squared: 0.6631, Adjusted R-squared: 0.6384
## F-statistic: 26.9 on 3 and 41 DF, p-value: 8.838e-10

This produces a better fit statistically, but things are now getting very confusing. It is not clear what the
third term is actually doing. The confidence intervals are quite wide, so we could ignore the sharp downturn,
as any shape within the confidence intervals is permissible. But the model still does not look right.

The advantages of polynomials is that they do result in a formula that can be written down and provided
as a predictive model. The major disadvantage is that the formula is rather complex and has no intrinisic
biological or ecological basis. You must also be very careful never to use these models to predict values that
fall outside the range used for fitting. Also the formulae produced by fitting polynomials are often used
without regard to the confidence intervals. Uncertainty is part of the statistical model and should be taken
into account.

5.3 Splines

A commonly used alternative to polynomials is to fit a so called smoother of some description. There are
many different ways to go about this, making the subject seem complicated. However for most practical
purposes they produce similar results and we can rely on the software to make most of the decisions.

The most commonly used smoothers are splines of some type. These work by fitting curves to sections of the
data and then splicing the results together. This gives the curves much greater flexibility that polynomials.
Almost any shape can be fitted.

The issue with this involves complexity. If we let the curves become too flexible we could fit a line to that
passed through all the data points. But this would not be useful and would leave no degrees of freedom. The
degree of waviness is selected in R automatically by cross validation if we use the mgcv package. There is
no guarantee that the model will be biologically meaningful, but many times the selection produces a curve
that fits the data well and can be interpreted.
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library(mgcv)
mod4<-gam(richness~s(grain))
summary(mod4)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## richness ~ s(grain)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.6889 0.4601 12.36 2.6e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(grain) 3.615 4.468 15.92 3.25e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.619 Deviance explained = 65.1%
## GCV = 10.616 Scale est. = 9.5269 n = 45

The summary gives a p-value for the term and also shows the estimated degrees of freedom. The more
complex the response, the more degrees of freedom are used in fitting the model.

Unlike regression models there is no formula associated with the model. So it can be difficult to communicate
the results. The usual way of presenting the model is graphically.
plot(mod4)
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Notice that the plot shows differences from the mean value (intercept) associated with the smoothed term
in the model. Splines can suffer from some of the same problems as polynomials, but they often lead to a
curve that has more intrinsic meaning.
g1+stat_smooth(method = "gam", formula = y ~ s(x))
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5.4 Complex shapes

The next data set is on the Gonadosomatic index (GSI, i.e., the weight of the gonads relative to total body
weight) of squid Measurements were taken from squid caught at various locations and months in Scottish
waters.
squid<-read.csv("/home/aqm/course/data/squid.csv")

We can plot out the data using a conditional box and whisker plot.
squid$month<-as.factor(squid$MONTH)

g0<-ggplot(data=squid,aes(x=month,y=GSI))
g1<-g0+geom_boxplot()
g1+facet_wrap("Sex")
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It seems sensible to split the data by gender.
males<-subset(squid,Sex=="Male")
females<-subset(squid,Sex=="Female")

Now we can try representing the pattern of change over the year using a spline model fit using mgcv.
mod1<-gam(GSI~s(MONTH),data=females)
plot(mod1)
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summary(mod1)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## GSI ~ s(MONTH)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.27244 0.06651 49.2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(MONTH) 8.93 8.999 156.7 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.53 Deviance explained = 53.4%
## GCV = 5.5387 Scale est. = 5.4944 n = 1242
g0<-ggplot(data=females, aes(x=MONTH,y=GSI))
g1<-g0+geom_point()
g1+stat_smooth(method = "gam", formula = y ~ s(x))
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The statistics are OK, but the biology seems wrong. The dip in the curve in October does not seem to make
sense. Although the number of knots in the spline are determined by cross validation we can lower them in
order to produce a simpler model.
mod2<-gam(GSI~s(MONTH,k=8),data=females)
plot(mod2)
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summary(mod2)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## GSI ~ s(MONTH, k = 8)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.27244 0.06848 47.79 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(MONTH) 6.815 6.987 179.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.502 Deviance explained = 50.5%
## GCV = 5.8608 Scale est. = 5.8239 n = 1242
g1+stat_smooth(method = "gam", formula = y ~ s(x,k=8))
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mod3<-gam(GSI~s(MONTH,k=7),data=females)
plot(mod3)
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summary(mod3)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## GSI ~ s(MONTH, k = 7)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.27244 0.06896 47.46 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(MONTH) 5.047 5.655 213.7 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.495 Deviance explained = 49.7%
## GCV = 5.9348 Scale est. = 5.9059 n = 1242
g1+stat_smooth(method = "gam", formula = y ~ s(x,k=7))
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By reducing the number of knots we have models which use fewer degrees of freedom. However the fit as
measured by the deviance explained (R squared in this case) is reduced.

We can test whether the first model is significantly better. We find that it is.
anova(mod1,mod2,mod3,test="F")

## Analysis of Deviance Table
##
## Model 1: GSI ~ s(MONTH)
## Model 2: GSI ~ s(MONTH, k = 8)
## Model 3: GSI ~ s(MONTH, k = 7)
## Resid. Df Resid. Dev Df Deviance F Pr(>F)
## 1 1232.0 6769.5
## 2 1234.0 7187.8 -2.0115 -418.25 37.844 < 2.2e-16 ***
## 3 1235.3 7299.4 -1.3317 -111.67 15.263 1.391e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

So we are left with a difficulty. The statistical criteria lead to a wavy model, while common sense suggest that
there is some issue that has not been taken into account. In such a situation we should look for additional
variables that have not been measured. Perhaps some of the squid that were caught actually came from a
separate population with a different timing of reproduction.
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Chapter 6

Non-linear models

Statistical modelling involves measures of fit. However scientific modelling often brings in other elements,
including theory that is used to propose a model for the data. These theoretical models are often non-linear
in the statistical sense. The terms do not enter in a linear manner. Such models can be difficult to fit to
real life data, but are often used when building process based ecological models.

6.1 Fitting a rectangular hyperbola

For example, resource use is commonly modelled using a function with an asymptote. The equation below
is a version of Holling’s disk equation that has been rewriten as a generalised rectangular hyperbola. This
is identical in form to the Michaelis-Menton equation for enzyme kinetics.

C = sR

F + R

Where

• C is resource consumption,
• R is the amount or density of theresource,
• s is the asymptotic value and
• F represents the density of resource at which half the asymptotic consumption is expected to occur.

This model is not linear in its parameters.

The data below have been simulated from this equation in order to illustrate the model fitting process.
d<-read.csv("/home/aqm/course/data/Hollings.csv")
plot(d,pch=21,bg=2)
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There are many ways to fit a theoretical non-linear model in R. One of the simplest uses least squares, so
some of the assumptions made are similar to linear regression.

It is much harder to run diagnosis on these sorts of models. Even fitting them can be tricky. Diagnostics
are arguably less important, as the interest lies in finding a model that matches our understanding of how
the process works, rather than fitting the data as well as possible.

We have to provide R with a list of reasonable starting values for the model. At present R does not provide
confidence bands for plotting, but this is less important in the case of non linear models. It is much more
interesting to look at the confidence intervals for the parameters themselves.
nlmod<-nls(Consumption~s*Resource/(F+Resource),data = d,start = list( F = 20,s=20))
newdata <- data.frame(Resource=seq(min(d$Resource),max(d$Resource),l=100))
a <- predict(nlmod, newdata = newdata)
plot(d,main="Non-linear model")
lines(newdata$Resource,a,lwd=2)
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confint(nlmod)

## Waiting for profiling to be done...

## 2.5% 97.5%
## F 33.97300 43.66697
## s 19.58576 20.32930
g0<-ggplot(data=d,aes(x=Resource,y=Consumption))
g1<-g0+geom_point()
g1+geom_smooth(method="nls",formula=y~s*x/(F+x),method.args=list(start = c( F = 20,s=20)), se=FALSE)
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The nice result of fitting this form of model is that we can now interpret the result in the context of the
process. If the resource represented biomass of ragworm in mg m2 and consumption feeding rate of waders
we could now estimate the maximum rate of feeding lies between 19.5 and 20.3 mg hr. The density at which
birds feed at half this maximum rate, if the theoretical model applies, lies beyond the range of the data that
we obtained (34 to 44 mg m2).

Non linear models can thus be extrapolated beyond the data range in a way that linear models, polynomials
and splines cannot. However this extrapolation relies on assuming that the functional form of the model is
sound.

It is common to find that parameters are estimated with very wide confidence intervals even when a model
provides a good fit to the data. Reporting confidence intervals for key parameters such as the asymptote
is much more important in this context than reporting R2 values. This can be especially important if the
results from non linear model fitting are to be used to build process models.

You should not usually fit a non-linear model of this type to data, unless you have an underlying theory.
When the data are taken from a real life situation it is always best to explore them first using other approaches
before thinking about fitting a non-linear model. When we obtain data from nature we do not know that
the equation really does represent the process. Even if it does, there will certainly be quite a lot of random
noise around the underlying line.

6.2 Real data

Smart, Stillman and Norris were interested in the functional responses of farmland birds. In particular they
wished to understand the feeding behaviour of the corn bunting Miliaria calandra L, a bird species whose
decline may be linked to a reduction of food supply in stubble fields.
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The authors tested five alternative models of the functional responses of corn buntings. They concluded
that Holling’s disk equation provided the most accurate fit to the observed feeding rates while remaining the
most statistically simple model tested.
d<-read.csv("/home/aqm/course/data/buntings.csv")

plot(rate~density,data=d,pch=21,bg=2)
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The classic version of Hollings disk equation used in the article is written as

R = aD

1 + aDH

Where

• F = feeding rate (food items)
• D = food density (food items m−2)
• a = searching rate (m2s−1)
• H = handling time (s per food item).

HDmod<-nls(rate~a*density/(1+a*density*H),data = d,start = list(a =0.001,H=2))
confint(HDmod)

## Waiting for profiling to be done...

## 2.5% 97.5%
## a 0.002593086 0.006694939
## H 1.713495694 1.976978655
newdata <- data.frame(density=seq(0,max(d$density),l=100))
HDpreds <- predict(HDmod, newdata = newdata)
plot(rate~density,data=d,pch=21,bg=2,ylim=c(0,1))
lines(newdata$density,HDpreds,lwd=2)
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g0<-ggplot(data=d,aes(x=density,y=rate))
g1<-g0+geom_point()
g1+geom_smooth(method="nls",formula=y~a*x/(1+a*x*H),method.args=list(start = c(a = 0.01,H=2)), se=FALSE)
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The figure in the article shows the five models that were considered.
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Figure 6.1: alt
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Figure 6.2: alt

Note that models with a vigilance term could not be fit to the data directly due to lack of convergence.

6.2.1 Calculating the R squared

The fit of the models in the paper is presented below.

R does not calculate R squared for non linear models by default. The reason is that statisticians do not
accept this as a valid measure. However ecologists are used to seeing R squared values when models are fit.
You can calculate them easily enough from a non linear model. First you need the sum of squares that is
not explained by the fitted model. This is simply the variance multiplied by n-1.
nullss<-(length(d$rate)-1)*var(d$rate)
nullss

## [1] 3.544056

We get the residual sum of squares (i.e. the unexplained variability) when we print the model
HDmod

## Nonlinear regression model
## model: rate ~ a * density/(1 + a * density * H)
## data: d
## a H
## 0.003966 1.841890
## residual sum-of-squares: 2.795
##
## Number of iterations to convergence: 7
## Achieved convergence tolerance: 3.807e-06

So, R squared is just one minus the ratio of the two.
Rsq<-1-2.795/nullss
Rsq*100
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Figure 6.3: alt

## [1] 21.13555

Which agrees with the value given in the paper.

6.2.2 Including the vigilance term

A very interesting aspect of this article is that the terms of the model were in fact measured independently.

Vigilance, which is defined as the proportion of the time spent being vigilant, rather than feeding, is included
in most of the models which are presented in the paper as alternatives to the classic disk equation. Most of
these are rather complex conditional models, but the simplest is model 2.

R = (1 − v)aD

1 + aDH

The vigilance parameter for model2 cannot be estimated from the data. However it was also measured
independently.

Notice that vigilance is fundamentally independent of seed density within this range of densities. The
measured value (approximately 0.4) can be included and the model refit with this value included.
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Vigmod<-nls(rate~(1-0.4)*a*density/(1+a*density*H),data = d,start = list(a =0.001,H=2))
confint(Vigmod)

## Waiting for profiling to be done...

## 2.5% 97.5%
## a 0.004321811 0.01115823
## H 1.028097415 1.18618719

When the measured vigilance is included in the model as an offset term the handling time is reduced by
about a half. This makes sense. We may assume that most of the measured vigilance is in fact reducing the
rate of feeding as the seed density is so high that search time is very small. However note that we could not
possibly have fitted this model without some prior knowledge of the offset value.

6.3 Quantile regression

Another way to look at the issue is to use an alternative approach to fitting statistical models. The traditional
approach to fitting a model to data assumes that we are always interested in the centre of any pattern. The
error term was classically assumed to be uninteresting random noise around an underlying signal. However
in many situations this noise is actually part of the phenomenon we are studying. It may sometimes be
attributed to process error, in other words variability in the process we are actually measuring, rather than
error in our measurements. This may possibly be occurring here. If handling time in fact sets an upper limit
on feeding rate, and if we can assume that feeding rate has been measured fairly accurately, then the upper
part of the data cloud should be estimating true handling time. Birds that are feeding more slowly than this
may be doing something else. For example, they may be spending time being vigilant. So there is possibly
some additional information in the data that has not been used in the published paper.

We can use quantile regression to fit a non linear model around the top 10% of the data and the bottom
10%.
library(quantreg)
QuantMod90<-nlrq(rate~a*density/(1+a*density*H),data = d,start = list(a =0.001,H=2),tau=0.9)
QuantMod10<-nlrq(rate~a*density/(1+a*density*H),data = d,start = list(a =0.001,H=2),tau=0.1)
QuantPreds90 <- predict(QuantMod90, newdata = newdata)
QuantPreds10 <- predict(QuantMod10, newdata = newdata)
plot(rate~density,data=d,pch=21,bg=2,ylim=c(0,1))
lines(newdata$density,HDpreds,lwd=2, col=1)
lines(newdata$density,QuantPreds90,lwd=2,col=2)
lines(newdata$density,QuantPreds10,lwd=2,col=3)
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If handling time limits the maximum rate at which seed can be consumed, then the estimate based on the
upper 10% of the data should be closer to the true handling time. So if we look at the summaries of these
models we should be able to get a handle on vigilance without the prior knowledge.
summary(QuantMod90)

##
## Call: nlrq(formula = rate ~ a * density/(1 + a * density * H), data = d,
## start = list(a = 0.001, H = 2), tau = 0.9, control = list(
## maxiter = 100, k = 2, InitialStepSize = 1, big = 1e+20,
## eps = 1e-07, beta = 0.97), trace = FALSE)
##
## tau: [1] 0.9
##
## Coefficients:
## Value Std. Error t value Pr(>|t|)
## a 0.00821 0.00132 6.24178 0.00000
## H 1.37329 0.04821 28.48585 0.00000
summary(QuantMod10)

##
## Call: nlrq(formula = rate ~ a * density/(1 + a * density * H), data = d,
## start = list(a = 0.001, H = 2), tau = 0.1, control = list(
## maxiter = 100, k = 2, InitialStepSize = 1, big = 1e+20,
## eps = 1e-07, beta = 0.97), trace = FALSE)
##
## tau: [1] 0.1
##
## Coefficients:
## Value Std. Error t value Pr(>|t|)
## a 0.00117 0.00051 2.29229 0.02334
## H 2.64950 0.29627 8.94298 0.00000



108 CHAPTER 6. NON-LINEAR MODELS

The upper limit (pure handling time) is 1.37 (se= 0.047)

The lower estimate that may include time spent being vigilant is estimated using quantile regression as 2.65
(se= 0.31)

Vigilance thus could, arguably, be estimated as the difference between the upper and lower estimates of
handling time divided by the upper value. As the uncertainty around these values has been provided by the
quantile regression in the form of a standard error we can use a montecarlo prodedure to find confidence
intervals by simulating from the distributions and finding the percentiles of the result.
quantile((rnorm(10000,2.65,0.31)-rnorm(10000,1.37,0.047))/rnorm(10000,2.65,0.31),c(0.025,0.5,0.975))

## 2.5% 50% 97.5%
## 0.2401205 0.4807025 0.7730838

This is within the range of the measured value.

There are some interesting elements here that could be discussed in the context of the explanation of the
study methods and results.

6.4 Summary

Many relationships in ecology do not form strait lines. If we only have data, and no underlying theory, we can
fit a model to the underlying shape using traditional methods such as polynomials or more contemporary
models such as splines and other forms of local weighted regression. However these models cannot be
extrapolated beyond the data range.

A very different approach involves finding a model “from first principles”. Often models are constrained to
pass through the origin and by some fundamental limit (asymptote). Model fitting then involves finding a
justifiable form for the curve lying between these two points. In some situations data can be used to “mediate”
between competing models. In other situations the best we can achieve is to find justifiable estimates, with
confidence intervals, for the parameters of a non linear model.

6.5 Exercise

A researcher is interested in establishing a predicitive equation to estimate the heights of trees based on
measurements of their diameter at breast height. Your task is to try to find a defensible model for three
different data sets.
pines1<-read.csv("https://tinyurl.com/aqm-data/pinus_allometry1.csv")

oaks<-read.csv("https://tinyurl.com/aqm-data/quercus_allometry.csv")

pines2<-read.csv("https://tinyurl.com/aqm-data/pinus_allometry2.csv")



Chapter 7

Analysis of covariance, nested data
and mixed effects

7.1 Introduction

We’ve seen that regression is often not the best available technique to use for bivariate analysis.The books
written by Zuur and associates show some of the big challenges involved in analysing real life ecological data.
The idealised assumptions of linear regression are very rarely met in full.

Zuur writes Always apply the simplest statistical technique on your data, but ensure it is applied
correctly! And here is a crucial problem. In ecology, the data are seldom modelled adequately by linear
regression models. If they are, you are lucky. If you apply a linear regression model on your data, then you
are implicitly assuming a whole series of assumptions, and once the results are obtained, you need to verify
all of them. What should we do if we violate all the assumptions? The answer is simple: reject the model.
But what do we do if we only violate one of the assumptions? And how much can we violate the assumptions
before we are in trouble?

This sounds frightening. If model assumptions are rarely met, how can we ever trust them? Do we need the
help of an expert statistician such as Alain Zuur to analyse all ecological data? Perhaps all we can use are
simple tests. But do we really know that their assumptions hold?

The best advice to a student aiming to analyse data for an MSc dissertation is simply to always make the
best possible attempt at diagnosing issues with the chosen analysis. Be aware of all the assumptions used
and be critical at all times. But don’t despair if some assumptions are not met. Always point out the
problems when discussing the analysis. In many cases the issues will in fact turn out to be unimportant.
The key message held within most data sets can often be extracted, even if models have minor violations of
assumptions. In other cases there may be more serious problems. Sometimes a more advanced analysis than
was orginally planned may be necessary. If you have spotted a problem and understand its implications, it
could be easier than you think to build a slightly more complex model. You will not be the first person to
have come across the issue. The biggest mistakes usually involve failing to account for lack of independence
in the data. This chapter runs through an example of this in practice. The data initially seem simple enough.

An important issue arises when the same relationship between two variables is repeated multiple times in a
data set. In the past you may have handled this situation by subsetting the data various times and repeating
the analysis for each subset. However it is possible to build more oomprehensive models that look at a
population of relationships.

109
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Figure 7.1:

7.2 Whale teeth and isotope ratios

In Zuur et al. (2009) a rather complex analysis involving generalised additive models and correlated residuals
is developed and justified as a means of ensuring that all model assumptions are met. The results of the
analysis are also presented in a paper that shows how the statistical analysis was used to answer an interesting
scientific question. It is well worth reading this paper before analysing the data.

The researchers aimed to piece together information regarding feeding behaviour and migration of Sperm
whales, based on analysis of the composition of their teeth. Specifically they looked at carbon and nitrogen
isotope ratios. N isotope ratios can be indicative of trophic position in marine communities. Trophic level is
expected to be higher for larger individuals of the same species. Sperm whales are approximately 4m long at
birth, with males growing to 18 m.The relative trophic position of the different stages in the life of several
male sperm whales can be investigated through the use of N stable isotope ratios. It was expected that the
trophic position would increase with age, as the animals become larger.

Whale teeth have growth rings. To obtain data the researchers analysed isotope ratios from the bands of
individual teeth.

The first task in the analysis could be simply to establish that the expectation of increased N isotope ratio
with age is supported by the data. We will concentrate on that before looking at more complex issues.

7.2.1 Moby’s tooth

Let’s first look at a single tooth that was obtained from a famous whale called Moby that was washed up on
the shores of the Firth of Forth in 1997 after many rescue attempts. Moby was 15.2 metres in length and
weighed 38.5 tons.
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Figure 7.2:

Moby’s bones went on display in the Royal Scottish Museum, Chamber’s street soon after death. The original
display failed to attract the public due to the appalling smell.

Moby’s skull has since been de-oderised and is now redisplayed. It has even been associated with a Turner
prize.

Moby is clearly a star turn. But, how does his life history compare to that of other Sperm Whales? This is
the topic we will analyse in this class.
Whales<-read.csv("https://tinyurl.com/aqm-data/whaleteeth.csv")
Moby<-subset(Whales,Whale=="Moby")

7.3 Plotting the data

We should first plot the data to look at the pattern. Notice the way a more complex label is set up for the
y axis. There are many tricks such as this in R that are rather hard to discover. If you need to use Greek
symbols on the axes of your own figures try adapting this code.
ylabel <-expression(paste(delta^{15}, "N"))
xlabel<-"Estimated age"

library(ggplot2)
theme_set(theme_bw())
g0<-ggplot(data=Moby,aes(x=Age,y=X15N))
g1<-g0+geom_point() +xlab(xlabel) +ylab(ylabel)
g1
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Figure 7.3:
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7.4 Fitting a regression

OK, so this all looks quite simple at this stage. The data points lie more or less along a straight line. So we
could fit a regression.
mod<-lm(data=Moby,X15N~Age)
summary(mod)

##
## Call:
## lm(formula = X15N ~ Age, data = Moby)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.07102 -0.28706 0.04346 0.33820 1.13724
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.748940 0.163559 71.83 <2e-16 ***
## Age 0.113794 0.006186 18.40 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4859 on 40 degrees of freedom
## Multiple R-squared: 0.8943, Adjusted R-squared: 0.8917
## F-statistic: 338.4 on 1 and 40 DF, p-value: < 2.2e-16
g1+stat_smooth(method="lm")+labs(y = ylabel,x=xlabel)
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7.4.1 Diagnostics

Diagnostics show that most of the assumptions of a regression appear to be met. However an issue shows
up when we look at the first diagnostic plot.
plot(mod,which=1)
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There is a clear pattern in the residuals.

7.4.2 Testing for serial correlation

In fact the residuals are serially correlated. This can be checked using a Durbin Watson test.
library(lmtest)
dwtest(Moby$X15N~Moby$Age)

##
## Durbin-Watson test
##
## data: Moby$X15N ~ Moby$Age
## DW = 1.1458, p-value = 0.0009539
## alternative hypothesis: true autocorrelation is greater than 0

We can confirm this using the acf function.
acf(residuals(mod))
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If any of the lines apart from the first extends above or below the blue line the data are significantly serially
correlated. In other words the last value can be used to partially predict the next value. If one residual is
negative, the next is also likely to be negative and vice versa. The correlation is significant at lag 1 and lag
2.

7.5 Interpreting the results

Does the serial correlation matter? Well in a purely statistical sense it could matter quite a lot. Zuur et
al take the effect into account through the use of a rather cunning statistical trick using an ARIMA model.
However most MSc students would be unlikely to be aware of this rather advanced method. In this context
it is not really worth the effort. The only real difference between a model that includes autocorrelation and
one that does not involves the size of the p-value and the width of the confidence bands. Providing that a
straight line is a reasonable description of the underlying pattern (and we will come on to that later), the
model is not changed.

There is something much more important to consider however. We have spotted the serial correlation (lack
of independence) between years that occurs in the case of Moby. However, you may have realised that in
reality all the data we have just analysed are totally lacking in independence anyway! They have been taken
from a single whale. So, in one sense we have been conducting statistics with a sample size of one.

In effect, the relationship that we have established applies only to Moby. It would also be really nice to
have data from some other teeth from Moby to check even this. We certainly cannot generalise it to other
whales. We may have found out some interesting information along the way. The researchers were interested
in understanding the trophic ecology of mature sperm whales in some detail. If they are right in assuming
that high levels of delta N are associated with feeding on larger prey then there may be some indication
that Moby spent several years in a row feeding on prey that may have been larger than expected for his age,
followed by a switch to rather smaller prey. This is quite a speculative interpretation, but it may tell us
something.
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7.6 Exercise

Now try implementing an appropriate method to look at alternatives to a straight line to capture the
empirical relationship between age and delta N measurements in Moby’s tooth. Comment on your findings.

7.7 Finding a general pattern

We actually have data for fifteen whales. So we could compare the pattern shown by Moby with the
population of whale teeth. So let’s plot out the data from all fifteen whales at once.
g0<-ggplot(data=Whales,aes(x=Age,y=X15N,col=Whale))
g1<-g0+geom_point() + xlab(xlabel) +ylab(ylabel)
g1
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There is still a clear pattern, but with much more scatter this time. This is to be expected, as each whale
has its own life history that contributes variability.

We can look at this by plotting out the data for each individual whale using a facet wrap to split the data.
g0<-ggplot(data=Whales,aes(x=Age,y=X15N))
g1<-g0+geom_point()+geom_line()+ labs(y = ylabel,x=xlabel)
g1+facet_wrap("Whale")
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Each whale seems to have its own pattern. Most are approximately linear, like Moby, but some show a very
different pattern

For the moment we will ignore this and continue to fit a simple regression model to all the data. Note THIS
IS THE WRONG WAY TO WORK WITH THE DATA!
mod1<-lm(X15N~Age,data=Whales)
summary(mod1)

##
## Call:
## lm(formula = X15N ~ Age, data = Whales)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5041 -0.7013 -0.1141 0.6209 3.3444
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.228411 0.108598 112.6 <2e-16 ***
## Age 0.095715 0.005631 17.0 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9953 on 305 degrees of freedom
## Multiple R-squared: 0.4865, Adjusted R-squared: 0.4848
## F-statistic: 288.9 on 1 and 305 DF, p-value: < 2.2e-16
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confint(mod1)

## 2.5 % 97.5 %
## (Intercept) 12.01471479 12.4421063
## Age 0.08463424 0.1067958

The problem with this model is that we have far too many degrees of freedom. The model has assumed that
each data point is independent, which clearly is not true.

7.8 Analysis of covariance

The data that we have available to predict N15 levels consists of two variables. One is Age and the other is
the identity of the individual whale from which the data was obtained. This is a categorical variable. If we
continue to put to one side the issue of independence of the data points within the regression for each whale
we can analyse the data using a technique known as analysis of covariance.

Analysis of covariance takes into account the differences between each group of observations. It is used to
answer the following questions.

• Does the level of a categorical factor affect the response variable?
• Does the slope of a regression line differ between levels of the categorical variable?

In our case the first question implies that each whale may have a different mean value for δ15N . If you read
the paper carefully you will see that the researchers were aware that this is a rather trivial question. They
looked at more subtle differences related to time of birth and life history. However we will ignore this for
the moment too and carry out the analysis in order to illustrate the point.

As mentioned previously, R has a very consistent syntax that makes model fitting very easy. All we need to
do to add in an effect for each whale to the model is to write lm(X15N~Age+Whale). The line of R code
preceding this sets the contrasts for the model. This determines the output from the summary of the model.
In this case we want to contrast the results for other whales with Moby (number 11 in the list).
contrasts(Whales$Whale)<-contr.treatment(levels(Whales$Whale),base=11)
mod2<-lm(X15N~Age+Whale,data=Whales)
anova(mod2)

## Analysis of Variance Table
##
## Response: X15N
## Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 286.21 286.215 431.039 < 2.2e-16 ***
## Whale 10 106.27 10.627 16.004 < 2.2e-16 ***
## Residuals 295 195.88 0.664
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mod2)

##
## Call:
## lm(formula = X15N ~ Age + Whale, data = Whales)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.70699 -0.51434 -0.07552 0.47030 2.64139
##
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## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.256788 0.174661 70.175 < 2e-16 ***
## Age 0.092183 0.005159 17.869 < 2e-16 ***
## WhaleI1/98 -0.010461 0.181371 -0.058 0.95404
## WhaleM143/96D -0.229444 0.220575 -1.040 0.29909
## WhaleM143/96E 0.385063 0.235813 1.633 0.10355
## WhaleM2583/94(1) -0.936579 0.216095 -4.334 2.01e-05 ***
## WhaleM2583/94(10) -0.357032 0.209785 -1.702 0.08983 .
## WhaleM2583/94(7) -0.901441 0.223214 -4.038 6.87e-05 ***
## WhaleM2679/93 -0.059622 0.185189 -0.322 0.74772
## WhaleM2683/93 0.267238 0.227314 1.176 0.24069
## WhaleM447/98 1.210339 0.192499 6.288 1.16e-09 ***
## WhaleM546/95 0.685273 0.219544 3.121 0.00198 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8149 on 295 degrees of freedom
## Multiple R-squared: 0.6671, Adjusted R-squared: 0.6547
## F-statistic: 53.73 on 11 and 295 DF, p-value: < 2.2e-16

The anova result is very clear. There is a significant additive effect that can be attributed to the individual.
So we can see that whales do differ in their baseline N15 levels. In order to interpret the model summary
you need to be aware that the intercept represents the value at age zero for Moby, which was set to be
the “control” or baseline for the contrasts. The other whale values are compared to the baseline. Thus if
a coefficient for an individual whale is not significant it means that the intercept for that whale was not
different to that of Moby.

So, the answer to the first question, just as we would expect, is a definite yes. Six of the ten whales that we
compared with Moby have significantly different levels of N15 after allowing for age.

How do we answer the second question? This involves adding an interaction term to the model. The
interaction implies that each whale could have it’s own intercept AND it’s own slope. If the interaction term
is significant then we have a very complex model that cannot be easily generalised.
mod3<-lm(X15N~Age*Whale,data=Whales)
anova(mod3)

## Analysis of Variance Table
##
## Response: X15N
## Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 286.215 286.215 734.509 < 2.2e-16 ***
## Whale 10 106.266 10.627 27.271 < 2.2e-16 ***
## Age:Whale 10 84.828 8.483 21.769 < 2.2e-16 ***
## Residuals 285 111.055 0.390
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The interaction term is highly significant. This is not suprising when we consider the lattice plot, which
showed a series of very different patterns for each whale.

If we summarise the model now we will obtain even more complex output which shows how the coefficients
depend on the identity of each whale.
summary(mod3)

##
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## Call:
## lm(formula = X15N ~ Age * Whale, data = Whales)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.58547 -0.40951 -0.01552 0.37746 2.41087
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.748940 0.210125 55.914 < 2e-16 ***
## Age 0.113794 0.007947 14.320 < 2e-16 ***
## WhaleI1/98 1.464565 0.303845 4.820 2.34e-06 ***
## WhaleM143/96D 1.905086 0.376915 5.054 7.73e-07 ***
## WhaleM143/96E 0.720710 0.364725 1.976 0.049115 *
## WhaleM2583/94(1) -1.517527 0.336649 -4.508 9.58e-06 ***
## WhaleM2583/94(10) 0.747337 0.328174 2.277 0.023512 *
## WhaleM2583/94(7) -0.559979 0.346500 -1.616 0.107179
## WhaleM2679/93 -0.750516 0.296705 -2.529 0.011962 *
## WhaleM2683/93 0.509286 0.412830 1.234 0.218351
## WhaleM447/98 1.557803 0.305940 5.092 6.45e-07 ***
## WhaleM546/95 3.269282 0.341382 9.577 < 2e-16 ***
## Age:WhaleI1/98 -0.065573 0.011918 -5.502 8.36e-08 ***
## Age:WhaleM143/96D -0.142106 0.022432 -6.335 9.23e-10 ***
## Age:WhaleM143/96E -0.004390 0.027327 -0.161 0.872476
## Age:WhaleM2583/94(1) 0.065493 0.020050 3.267 0.001222 **
## Age:WhaleM2583/94(10) -0.065797 0.018155 -3.624 0.000343 ***
## Age:WhaleM2583/94(7) -0.007142 0.022432 -0.318 0.750421
## Age:WhaleM2679/93 0.041481 0.012471 3.326 0.000996 ***
## Age:WhaleM2683/93 -0.001922 0.025478 -0.075 0.939929
## Age:WhaleM447/98 -0.012176 0.013906 -0.876 0.381993
## Age:WhaleM546/95 -0.194624 0.021171 -9.193 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6242 on 285 degrees of freedom
## Multiple R-squared: 0.8112, Adjusted R-squared: 0.7973
## F-statistic: 58.33 on 21 and 285 DF, p-value: < 2.2e-16

Now we can see that six of the whales do not just have a different baseline level of δ15N to Moby, the change
over time when modelled as a linear response is also different for these individuals.

7.8.1 More about interactions

The model above could also be written in R longhand as:
mod3<-lm(X15N~Age+Whale+Age:Whale,data=Whales)

The {*} symbol is simply short hand for this. It does not imply multiplication. The interaction component
is Age:Whale. Don’t confuse statistical interactions with ecological interactions such so those that occur in
a food web. A statistical interaction implies that we need to know additional information in order to predict
something. For example if an experiment showed an interaction between nitrogen fertilizer level and soil
type we could not be sure that adding nitrogen always enhances growth in the same way. Perhaps it has no
effect at all when applied to heavy clay soils, although it increases growth generally. Finding interactions
suggest complexity. This can often be interesting in itself.
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7.8.2 Plotting the model

The model with interactions can be plotted using ggplots as a series of individual regression lines for each
whale. Notice that the slope differs between each of the panels.
g0<-ggplot(data=Whales,aes(x=Age,y=X15N,group=Whale))
g1<-g0+geom_point()+ labs(y = ylabel,x=xlabel) +geom_smooth(method="lm")
g1+facet_wrap("Whale")

M447/98 M546/95 Moby

M2583/94(10) M2583/94(7) M2679/93 M2683/93

I1/98 M143/96D M143/96E M2583/94(1)

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

0 10 20 30 40

10

12

14

16

10

12

14

16

10

12

14

16

Estimated age

δ15
N



122 CHAPTER 7. ANALYSIS OF COVARIANCE, NESTED DATA AND MIXED EFFECTS



Chapter 8

Introducing mixed effects modelling

Analysis of covariance is often used when there are a small number of factor levels. If we had two or three
whales either subsetting for each whale or analysis of covariance would be the only appropriate methods.
There would not be enough replication to think about the data as having been drawn from a larger population
of whales that it could represent. Each case would be treated as being distinct. However, as we get more
data analysis of covariance becomes clumsy and less appropriate as a technique. We can see that in this
example. A mixed effects model treats each level of a factor as a random effect. This is a powerful
technique when we have enough data as we are effectively trying to draw out some underlying population
level pattern, which we may want to use when comparing the response of each individual. Mixed effects
modelling also has some advantages for data sets with missing data or unbalanced numbers of observations
for each group.

The example was adapted from Zuur’s book on mixed effects models. Mixed effects are also known as
hierarchical models. It is important to be aware of the potential usefulness of such models and the difference
between fixed and random effects. The last model we fitted used a regression equation for each whale in
turn. This approach assumes the identity of the whale is a fixed factor. We need to know each whale’s name
in order to use the model! If we want to generalise for all whales we would be much better to think of the
whales as compromising a random sample from all the whales that we might have found.

The following R code uses a mixed effects model approach to fit a separate regression line for each whale. To
cut a long story short, and to simplify the overall idea, you may think of the result as being rather similar
to taking the mean slope and intercept from all the individual regressions and finding confidence intervals
for the pooled result. This was a traditional way of analysing data of this type and it is still used by some
researchers. It is not “wrong” in essence, but modern methods are both easier to apply and more formally
correct due to the manner in which unbalanced samples are handled. Look at the plot we produced for a
regression fitted to each whale to get an idea of what the model is based on. Imagine averaging the slopes
and intercepts shown in this figure in order to get an intuitive idea of the basis for the model.

8.1 Using the nlme package

The nlme package name stands for “non linear mixed effects”. It has some poweful functions for fitting
non linear models with random effects. More recently the lme4 package has become more popular for linear
mixed effects as the algorithm used is prefered by mathematical statisticians. In almost all applied situations
the results from using either package for linear mixed effects models are identical. Plotting the models is
easy using nlme as the package has a grouping function for the data and a series of default plots that use
the lattice package. Lattice plots have now largely given way to ggplots when formally presenting results as
ggplots are more flexible and nicer looking. However the default in nlme is easy to use and easy to interpret.
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8.1.1 Intercept only model

library(nlme)
w<-groupedData(X15N~Age|Whale,Whales)
intercept.mod<-lme(X15N~Age,random=~1|Whale,data=w)
print(plot(augPred(intercept.mod,level=c(0,1))))
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8.1.2 Random slopes model

slope.mod<-lme(fixed=X15N~Age,random=X15N~Age|Whale,data=w)
print(plot(augPred(slope.mod,level=c(0,1))))
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The fixed effect is the underlying trend of increasing δ15N levels with age. The random effect is the varia-
tion in slope and intercept between whales. We can test which model is prefered on statistical criteria by
comparing them.
anova(intercept.mod,slope.mod)

## Model df AIC BIC logLik Test L.Ratio p-value
## intercept.mod 1 4 792.3965 807.2777 -392.1982
## slope.mod 2 6 669.3825 691.7044 -328.6913 1 vs 2 127.0139 <.0001

So the slope model provides a significantly better fit to the data, just as we found when taking whale as a
fixed effect.

8.1.2.1 Confidence intervals for the effects

intervals(slope.mod)

## Approximate 95% confidence intervals
##
## Fixed effects:
## lower est. upper
## (Intercept) 11.60509740 12.41013148 13.2151656
## Age 0.03376861 0.07914293 0.1245172
## attr(,"label")
## [1] "Fixed effects:"
##
## Random Effects:
## Level: Whale
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## lower est. upper
## sd((Intercept)) 0.84344384 1.33071563 2.0994926
## sd(Age) 0.04669552 0.07443052 0.1186389
## cor((Intercept),Age) -0.97238683 -0.90157346 -0.6787395
##
## Within-group standard error:
## lower est. upper
## 0.5750660 0.6242716 0.6776874

By taking into account the lack of independence we now get a much wider confidence intervals for the
coefficients than we did when we very naively fitted a regression to the pooled data without taking into
account the identity of the whale from which the data was obtained. However we now have a generalisable
model based on a sample of size of n=15, rather than the model with far too many degrees of freedom. The
mixed model is better than the model used in the analysis of covariance, as this could only be used for
prediction if you provide the identity of the particular whale that you are interested in.

Notice that the parameters estimated for the random effects are standard deviations. If you can imagine
actually fitting all 15 separate models, writing down the interecept and the slope 15 times and finding the
mean and standard deviation of each you have approximated the operation carried out by the mixed effects
modelling. The standard deviations are approximations, so there are also confidence intervals for these
provided by the full fitted model.

There is a whole lot more to mixed effects modelling, but this result is quite simple to understand in this
context. It provides a robust solution to the issue of finding confidence intervals for the mean slopes and
intercepts when analysis of covariance shows that seperate regression models are needed for each level of
a factor, but we do want to treat the levels of the factor as random draws from a population as there are
too many factor levels to be concerned with comparisons between each one. Mixed effects also handles
unbalanced samples, as if one whale has fewer observations the overall model gives the data less weight.

Finding an underlying trend in N15 levels is only part of the story told in the paper. An issue that has
been set well to one side in this still simplified example is whether a linear regression is the best approach to
finding an underlying pattern. In fact Zuur et al used GAMs in order to capture the non linear relationship
that some individuals seem to have.

8.2 Using the package lme4

The alternative package to nlme is lme4. This uses a more sophisticated approach to actually fiting the
model that is considered more reliable mathematically by some statisticians. In most real life situations
there is little difference between the results from each package and they can usually be used interchangeably.

A slightly unusual aspect of lme4 is that it does not provide p-values for the test of signficance of the effects
by default. This was a deliberate decision made by the author of the package (Douglas Bates). The argument
is that the degrees of freedom are ill-defined for many technical reasons. As p-values are only really useful
if a statistic such as t is close to the boundary of significance the argument goes that there is no point in
calculating them unless they are exact. A t value of 3 is going to be significant whatever and a t value of
1 will not be. However some people demand p-values and they can be calculated quite easily. The package
Lmertest adds these calculations to the output of lme4.

The syntax used to fit the models is slightly different but follows the same general pattern as nlme. A random
effect for the intercept alone is written as (1|Whale).
library(lmerTest)
intercept.mod2<-lmer(X15N~Age+(1|Whale),data=w)
intercept.mod2

## Linear mixed model fit by REML ['lmerModLmerTest']
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## Formula: X15N ~ Age + (1 | Whale)
## Data: w
## REML criterion at convergence: 784.3965
## Random effects:
## Groups Name Std.Dev.
## Whale (Intercept) 0.6139
## Residual 0.8149
## Number of obs: 307, groups: Whale, 11
## Fixed Effects:
## (Intercept) Age
## 12.25874 0.09245
anova(intercept.mod2)

## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## Age 216.11 216.11 1 301.39 325.46 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The slope model can be fit in the same way.
slope.mod2<-lmer(X15N~Age+(Age|Whale),data=w)
slope.mod2

## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: X15N ~ Age + (Age | Whale)
## Data: w
## REML criterion at convergence: 657.3826
## Random effects:
## Groups Name Std.Dev. Corr
## Whale (Intercept) 1.33124
## Age 0.07446 -0.90
## Residual 0.62427
## Number of obs: 307, groups: Whale, 11
## Fixed Effects:
## (Intercept) Age
## 12.41013 0.07914
## convergence code 0; 1 optimizer warnings; 0 lme4 warnings
anova(slope.mod2)

## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## Age 4.5882 4.5882 1 9.8319 11.773 0.006585 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8.2.1 Profile confidence intervals

A more accurate, but much slower, profiling technique is used to calculate confidence intervals in lme4. The
result may be slightly different from nlme.
# Note that this takes around 30 seconds to run as it is based on simulated profiling
confint.merMod(slope.mod2)

## 2.5 % 97.5 %
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## .sig01 0.85660240 2.0833944
## .sig02 -0.97150830 -0.6859207
## .sig03 0.04712678 0.1173118
## .sigma 0.57633298 0.6792690
## (Intercept) 11.57425698 13.2460978
## Age 0.03191633 0.1262261

8.3 Ggplots from lme output

The lme4 package does not include the augpred function. However it is easy to reproduce the same sort of
figures using ggplots. The trick is to predict the fixed effect alone and the fixed and random effects for each
data point then add the results to the figure as lines.
Whales$fixed<-predict(slope.mod2,re.form=NA)
Whales$rand<-predict(slope.mod2)

g0<-ggplot(Whales,aes(x=Age,y=X15N))
g1<-g0+geom_point()
g1<-g1+geom_line(aes(x=Age,y=fixed),colour=2,lwd=1)
g1<-g1+geom_line(aes(x=Age,y=rand),colour=3,lwd=1)
g1<-g1+labs(y = ylabel,x=xlabel,title="Fixed and random effects")
g1+facet_wrap("Whale")
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8.4 Mixed effect gamm models

You could argue (rightly), after looking at al the data. that straight lines do not provide a good model for
the pattern in the data at all. However analyses are not just about finding the best fitting model. The model
has to have some underyling purpose and feed into some narrative about the data. A fitted linear trend is
often used as an easily communicated baseline for comparison rather than as a perfect model for the data.
So it may still be useful to be able to state how much “on avererage” you expect δ15N levels to increase per
year.

It is however possible to fit smoothers using a mixed effects approach. The approach could be “overkill” for
some purposes. If you just need to find the overall average change in δ15N per year it would not be useful.
However it could also help show the differences between the pattern for each whale and so fit the overall
population level pattern if the trend is not linear.

So .. and do note that this is rather advanced stuff that is not an essential part of the course, I will show
how this can be done using the gamm4 package in R.

Fitting the model uses the same syntax, but with a smooth term for the fixed effects. The interepretation
of the smoother is more difficult.
library(gamm4)
gamm.mod<-gamm4(X15N~s(Age),data=w,random = ~ (Age|Whale))
gamm.mod

## $mer
## Linear mixed model fit by REML ['lmerMod']
## REML criterion at convergence: 619.3
## Random effects:
## Groups Name Std.Dev. Corr
## Whale (Intercept) 1.35294
## Age 0.07361 -0.91
## Xr s(Age) 2.66779
## Residual 0.57755
## Number of obs: 307, groups: Whale, 11; Xr, 8
## Fixed Effects:
## X(Intercept) Xs(Age)Fx1
## 13.8111 -0.2626
##
## $gam
##
## Family: gaussian
## Link function: identity
##
## Formula:
## X15N ~ s(Age)
##
## Estimated degrees of freedom:
## 5.66 total = 6.66
##
## lmer.REML score: 619.3

The only real way to understand any model based on a smoother is to plot it out. The effects can be
extracted and added to plots.
Whales$fixed<-predict(gamm.mod$gam)
Whales$rand<-predict(gamm.mod$mer)
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g0<-ggplot(Whales,aes(x=Age,y=X15N))
g1<-g0+geom_point()
g1<-g1+geom_line(aes(x=Age,y=fixed),colour=2,lwd=1)
g1<-g1+geom_line(aes(x=Age,y=rand),colour=3,lwd=1)
g1<-g1+labs(y = ylabel,x=xlabel,title="Fixed and random splines")
g1+facet_wrap("Whale")
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Notice that there is now an overall curve for the fixed effect with separate curves for each whale. The overall
fixed effect model is the average of all these curves.

It is possible to go one step futher and add confidence intervals to a fixed effect plot, because the standard
error for the fixed effects can also be found
Whales$fixedse<-predict(gamm.mod$gam,se=T)$se

g0<-ggplot(Whales,aes(x=Age,y=X15N))
g1<-g0+geom_point()
g1<-g1+geom_line(aes(x=Age,y=fixed),colour=2,lwd=1)
g1<-g1+geom_line(aes(x=Age,y=fixed+2*fixedse),colour=2,lty=2)
g1<-g1+geom_line(aes(x=Age,y=fixed-2*fixedse),colour=2,lty=2)
g1<-g1+geom_line(aes(x=Age,y=rand),colour=3,lwd=1)
g1<-g1+labs(y = ylabel,x=xlabel,title="Fixed and random splines")
g1+facet_wrap("Whale")
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The real reason for all this in practice would be to compare the overall pattern with that shown by each
individual whale. The overall fixed effect as fitted by a spline may be a useful model as a general description
of the pattern shown by the population. The normal caveats about the representativiness of the sample
apply of course. In this particular case there is also the issue that the whales may have lived at different
periods.

Notice that the confidence intervals for the smoother are now much wider than you would obtain if the
random effect of each whale was not included in the model. This is because the sample size is effectively only
15 and the random variability between whales is being properly taken into account. The model potentially
generalises to the population from which the sample (n=15) was taken.
g0<-ggplot(Whales,aes(x=Age,y=X15N,col=Whale))
g1<-g0+geom_point()
g1<-g1+geom_line(aes(x=Age,y=fixed),colour=1,lwd=1)
g1<-g1+geom_line(aes(x=Age,y=fixed+2*fixedse),colour=1,lty=2)
g1<-g1+geom_line(aes(x=Age,y=fixed-2*fixedse),colour=1,lty=2)
g1<-g1+labs(y = ylabel,x=xlabel,title="Fixed effect confidence intervals")
g1
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Look at the difference between the “naive” smooth that overpredicts by just using all the points as if they
were all independent and the much more robust model that is based on the population level fixed effect.
g0<-ggplot(Whales,aes(x=Age,y=X15N))
g1<-g0+geom_point()
g1<-g1+geom_line(aes(x=Age,y=fixed),colour=1,lwd=1)
g1<-g1+geom_line(aes(x=Age,y=fixed+2*fixedse),colour=1,lty=2)
g1<-g1+geom_line(aes(x=Age,y=fixed-2*fixedse),colour=1,lty=2)
g1<-g1+labs(y = ylabel,x=xlabel,title="Fixed and random CIs")
g1+geom_smooth(method="gam",formula=y~s(x))
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You should also notice that the general shape of the response is still very similar. The point of going through
all the process of modelling the random effect is just to reveal how much (or how little) confidence we have
that the shape of the response can be generalised. The appropriate model for the data takes into account
the small sample of whales, even though there are many individual data points. The message seems to be
that whales begin to feed on similar sized food items overall once they reach an age of 30 years.

8.5 Summary

This example shows that a lot can be learned about the data by first applying relatively simple (and statis-
tically incorrect) techniques, even though the models that are first tried will later need major modification
in order to prevent violations of assumptions. Once all the issues have been spotted, solutions can usually
be found, although they may involve using more advanced techniques used in combination. This approach
may need help from a more experienced analyst. The problem of lack of independence are very common
in many data sets. You can explore the data using simple techniques in the knowledge that an ajustment
may be needed before finally presenting results in order to ensure the findings are robust from a statistical
perspective.

Notice that constructing the more sophisticated models doesn’t necessarily change the underlying message
in the data. If we divide models into an informative component, that we are most interested in, and a
stochastic component (variability) that is of less scientific interest, then the statistical sophistication is
largely needed mainly to produce a better model for the stochastic element. Looking at the data carefully
will usually produce insight into the scientific issu. Finding the right model allows us to produce more
defensible confidence intervals (or p-values), even though our basic conclusions may not change. This is a
common element in statistical modelling. Don’t expect complex models to necessarily “tell you more” than
simpler models. This may look like a lot of work for little reward, but the fundamental reason for using
more sophisticated models is to reduce the number of assumptions that are being violated and thus carry
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out truly reproducible research. In this case we end up with a generalised pattern based on the data that we
are not overly confident about, but may be a useful summary of the general trend at the population level.
So while we would not be suprised at all to find whale teeth that follow very different patterns to that shown
in Moby’s particular case, we would confidently expect that a new sample of fifteen whales would produce a
similar pattern to that found using the mixed effects model, providing the sample has been drawn from the
same potential population.

The example has also been used to introduce analysis of covariance, a technique that uses both a categorical
variable (factor) and a numerical variable as explanatory variables in the model formula. You can now apply
the technique to slightly simpler data in the examples below in order to practice.

8.5.1 Exercises

1. Analysis of covariance can be used to look in more detail at the mussels data again. You first have to
make sure that R treats site as a factor.

Mussels<-read.csv("https://tinyurl.com/aqm-data/mussels.csv")
Mussels$Site<-as.factor(Mussels$Site)

Use linear analysis of covariance.

Is there a difference in the relationship between BTvolume and shell length between sites? How did you
reach your conclusion?

2. Soybean growth curves

Try these growth curves. They are best fit using non-linear mixed effects, but you could still try using the
methods above for this exercise.
data("Soybean")
d<-subset(Soybean,Soybean$Variety=="F")
d<-subset(d,d$Year==1990)
g0<-ggplot(d,aes(x=Time,y=weight))
g1<-g0+geom_point()
g1+facet_wrap("Plot")
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3. Here is another similar but very difficult data set to practice on (optional). It has also been analysed
by Zuur. The measurements are lengths and ash free dry weight (AFD) of 398 wedge clams (Donax
hanleyanus) taken from a beach in Argentina during six different months (Ieno, unpublished data).
The main issue is the extremely unbalanced nature of the data. Can we do anything useful at all with
this tricky observational data set? There are limits that even the most sophisticated statistics cannot
remove.

Clams<-read.table("https://tinyurl.com/aqm-data/Clams.txt",head=T)
Clams$MONTH<-as.factor(Clams$MONTH)

The data frame already contains log transformed versions of the variables. Try first fitting a regression to
the untransformed data and then use the transformed version. Which is most suitable for modelling using
regression? Now use analysis of covariance to investigate the effect of month on the relationship. Does this
work? What would you do if faced with real life data of this sort?
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Chapter 9

Design and analysis of experiments
part 1

9.1 Introduction

Observational studies are much more common in environmental science and ecology than in other fields.
When we analyse observational data we are seeking to gain evidence in support of scientific hypotheses.
However this evidence tends to be indirect and open to a range of interpretations. In contrast, a well
designed experiment involves a planned manipulation of nature that should allow us to test hypotheses
directly. A statistical hypothesis never completely coincides with the scientific hypothesis, however in an
experimental setting the two concepts may be closely linked.

Experimental studies are rare in ecology because they tend to be costly to set up, may require large areas
and may need to run for many years in order to provide convincing data. So we often look for natural
experiments that arise on an ad hoc basis to provide data. Sometimes unintentional human interventions
such as oil spills, hunting, landscape fragmentation etc provide such systems that we can study. Although
these rarely follow conventional experimental design, familiarity with experimental concepts may help in the
selection of an appropriate analysis.

Many of the analytical methods and concepts used by experimental ecologists and environmental scientist
have been derived from agricultural experiments. There are good reasons for this. The most influential
statistician of all time, R A Fisher, was employed for many years at Rothamstead agricultural research
centre. During that time he developed the theory and practical application of analysis of variance. The
language used to describe experimental designs is based around this work. Although this helps to provide
a common language it can sometimes be confusing. Terms such as “split plot” can be used for a design
with no real plots, “Repeat measures” can occur when the measures are not actually taken on more than
one occasion. Blocks may refer to non spatial entities. The key to understanding experimental design is to
realise that the design of the experiment and the design of the statistical model used to analyse it go hand
in hand. If you can understand the structure of the data and the model used to analyse it you can either
design experiments to produce appropriate data or design surveys that provide observational data that can
be analysed using methods designed for experiments.
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9.2 Basic concepts of experimental design

9.2.1 1. Replication

The most important element to recognise when designing any form of experiment that will be analysed using
statistical methods is the amount of replication involved. This can be easy to determine if the experimental
unit is well defined. For example if a treatment is applied to an animal then the number of replicates is
usually going to be the number of animals used in the experiment. However if the animals share a single
environment, such as a cage or enclosure, then that may become the experimental unit thus possibly reducing
the number of replicates. It can be more complex when treatment is applied to plots of land due to spatial
auto correlation and lack of independence. Ecological experiments have often been criticised for involving so
called “pseudoreplication”. This occurs when the true number of independent replicates is much lower than
the number claimed by the researcher. One cause of this may be that sub samples taken from what should
properly be regarded as a single experimental unit are analysed as if they constitute true replicate samples.
This may become clearer after we have looked at some examples. The amount of replication needed to
establish the significance and size of the effect of some intervention depends to a large extent on the amount
of natural variability in the system of study. Some laboratory based experiments can be based on extremely
small numbers of replicates. For example, if drugs are administered to a set of genetically identical mice
there may be no need for more than three animals in the control and treatment group in order to establish a
statsitically significant effect. The reason for this is the response of all the animals without intervention would
be very similar and all are likely to respond in identical ways to the treatment. However this experiment
would be limited to establishing the effect of the drug on that single genotype. If a set of individuals captured
at random from a wild population were used the study would have to be much larger. If the intention was
to test the drug on the wild population at large it would have to be even larger in order to account for all
the extraneous source of variability in the environment. Similarly if a researcher is interested in the effects
of some treatment on plant growth and works with genetically similar plants grown on identical media in
a greenhouse, for example using hydroponics or a very uniform potting compost, then the experiment may
be need few replicates. However if the plants are grown in fields with varying soil conditions both within
and between fields the experimental design will need to take this variability into account. Ecologists and
environmental scientists face more challenges than other researcher as a result of the variability in natural
systems. At the same time it may be difficult or impossible to find enough naturally ocurring independent
replicates to use robust analytical methods.

9.2.2 2. Treatment levels

A second concept is that of treatment levels. The most basic type of experiment involves two levels of
a treatment. The first level is simply no intervention (control). So, if we wanted to look at the effects
of pesticides on pollinator abundance we would design an experiment with replicated units in which no
pesticide was applied (control) and others in which the same level was applied. It is easy to see that
the two level model could be extended to include more categories, such as high, medium and low levels
of application. The classic analyses use fixed, categorical treatment levels. However in an observational
context we often obtain continuous measurements. This influences the way we analyse data as we may
substitute regression and analysis of covariance for a classic ANOVA. However linear statistical models have
an underlying mathematical structure that can be used for either form of data. We can build models with
combinations of both types of variables.

9.2.3 3. Randomisation

The third concept to understand is randomisation. When designing an experiment the units should be
assigned a treatment level at random which should not depend on their current status and ideally should not
even be known by the experimenter. So, for example, in drug trials the participants are assigned a treatment
at random. In a blind trial they themselves do not know whether they have been given a new drug or a
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placebo. In a double blind trial neither does the researcher. If random selection is used there should be
no criteria used to choose those that receive the treatment. As you can imagine, this can sometimes raise
ethical issues, but is a fundamental feature of statistically rigorous experimental design. In many situations
involving “natural” experiments there is no randomisation in the application of treatments. For example a
forest fire may burn some trees and leave others intact but the selection of trees for treatment by fire is far
from random. Parasites may attack hosts that are weakened by some other cause. Often spatial prximity is a
key factor in selection for treatment. This leads to spatial autocorrelation and a lack of independence. Once
more this makes applying the analytical methods designed for analysing true experiments more challenging
when data is derived from observations of the natural system.

9.2.4 4. Interactions

We use the word interaction frequently in ecology to refer to effects such as competition, depredation,
parasitism and other elements involved in the systems we study. However in statistics the word has a
specific meaning that applies to experiments or observational studies involving more than a single factor.
An interaction occurs when the effects of the factor are not additive. In other words the level of one factor
influence the effect of another. Take for example an experiment in which saplings were grown at two light
levels, full sun and 50% shade and two irrigation treatments applied. Let’s call them high and low. Plants
need both water and light to grow so we might expect the plants grown in full sun with high levels of
irrigation to grow faster than those with low levels of irrigation. However what if the plants fail to respond
to increased watering at low light levels, or even grow more slowly, perhaps due to waterlogged roots. In
this case there would be an interaction as the two effects do not add together. The effect of irrigation is
conditional on the level of light.

9.2.5 5. Fixed and random effects

The distinction between whether we treat factors as having fixed or random effects is rather subtle and
subjective. Simply put fixed effects are those that we are most interested in while random effects represent
natural variability that we may wish to quantify and control for, but which is not directly influential on our
scientific hypotheses. When we analyse experimental data using R or any other statistical package we can
declare some effects to be fixed and others as random. If for example we carried out the same experiment
at five different sites that were selected at random from a large set of possible locations we may treat site
as random effect, as we are not interested in the specific effect of any single named site. However if we
deliberately selected the sites as representing different conditions that we may be interested in then the
effect of site would be fixed.

When we include a variable in a model as a random effect we are only interested in the amount of variability,
not the specific source of variability at the level of a single observation. So instead of looking at specfic
effects we look at the variance or standard deviation of each random effect. These effects may be at a range
of levels. For example we might look at the variability in yield between single plants and between fields. If
no treatment has been assigned then in both cases we would only be interested in the variances. We usually
fit “mixed effects” models however as we are typically interested in some form of fixed effect in addition to
random variation.

It can often be rather difficult to decide which effects should be treated as random, and when it is appropriate
to do so. The good news is that in many situations it doesn’t really matter. The p-values and confidence
intervals for the fixed effects that we are most interested in may not be influenced by the choice at all. The
bad news is that in other cases the decision can be very important. Failure to declare a random effect as an
error term may lead to type one errors, in other words, declaring a result to be statistically significant when
it is not. In other situations, involving nested effects at different levels, the use of a mixed effects model is
essential. Again, this may become clearer after looking at examples.
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Figure 9.1: alt text

9.3 Types of design

9.3.1 Completely randomised design

This is the simplest form of experiment. In this design, all levels of the treatment or all combinations of
treatment levels are assigned to experimental units completely at random. Often one of the treatment levels
is considered to be a control (i.e. no intervention). If all the factor levels involve some form of treatment one
of them can be considered a reference level or baseline. There must be replication of each treatment level.

The statistical model is a simple one way Anova.

Let’s look at a simple experiment of this type. We’ll take an agricultural example. A researcher measured
soil moisture at a certain depth following irrigation using four different techniques always using the same
amount of water. The idea was to find out if there were any differences between them in order to find the
most efficient technique in which less moisture was lost through evaporation. Let’s first assume that the
moisture levels were measured once in each plot. The layout looks like this.
library(ggplot2)
library(reshape)
library(multcomp)

d<-read.csv("https://tinyurl.com/aqm-data/irrigation1.csv")
str(d)

## 'data.frame': 16 obs. of 3 variables:
## $ plot : int 1 2 3 4 5 6 7 8 9 10 ...
## $ irrigation: Factor w/ 4 levels "A","B","C","D": 1 1 1 1 2 2 2 2 3 3 ...
## $ moisture : num 12.3 12.6 11.4 12.1 12.4 ...

9.4 Visualising the data

d$plot<-factor(d$plot)
d$irrigation<-factor(d$irrigation)
g0<-ggplot(d,aes(x=irrigation,y=moisture))
g0+geom_point()
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Plotting the means with confidence intervals is a good way of identifying patterns that can be tested for
significance.
g1<-g0+stat_summary(fun.data=mean_cl_normal,geom="point")
g1+stat_summary(fun.data=mean_cl_normal,geom="errorbar",colour="black")
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OK. So we can analyse the experiment using Anova as we have seen previously.
mod<-lm(moisture~irrigation,data=d)
anova(mod)

## Analysis of Variance Table
##
## Response: moisture
## Df Sum Sq Mean Sq F value Pr(>F)
## irrigation 3 10.6108 3.5369 6.4626 0.007504 **
## Residuals 12 6.5675 0.5473
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Nothing new here. You should be able to interpret the table easily.

9.4.1 Comparisons

The multcomp package provides a useful way of summarising the results by testing the general linear hy-
pothesis for each treatment level. By default this will use the treatment that is lowest in alphabetical order
as the “control” or baseline.
plot(glht(mod))
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summary(glht(mod))

##
## Simultaneous Tests for General Linear Hypotheses
##
## Fit: lm(formula = moisture ~ irrigation, data = d)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) == 0 12.0750 0.3699 32.644 <0.001 ***
## irrigationB == 0 0.7417 0.5231 1.418 0.418
## irrigationC == 0 -1.0583 0.5231 -2.023 0.172
## irrigationD == 0 1.0583 0.5231 2.023 0.172
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

So, although the anova can be reported as having detected significant variation between treatments (F 3,12
=6.4, p<0.01) there are no significant differences between treatment A and the others.

As no treatment was a natural control the best way to proceed in this case is to look at multiple comparisons
to determine where the significant difference lie. We need to make an appropriate adjustment such as Tukey’s.
plot(glht(mod, linfct = mcp(irrigation = "Tukey")))
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summary(glht(mod, linfct = mcp(irrigation = "Tukey")))

##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lm(formula = moisture ~ irrigation, data = d)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## B - A == 0 0.7417 0.5231 1.418 0.51263
## C - A == 0 -1.0583 0.5231 -2.023 0.23308
## D - A == 0 1.0583 0.5231 2.023 0.23304
## C - B == 0 -1.8000 0.5231 -3.441 0.02187 *
## D - B == 0 0.3167 0.5231 0.605 0.92840
## D - C == 0 2.1167 0.5231 4.046 0.00747 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

So it appears that treatment C leads to significantly lower soil water content than either B or D. This may
be the type of irrigation method to reject an inefficient. The other methods were indistinguishable based on
the results from this rather small study. A larger study would be needed to detect significant differences.
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9.5 Completely randomised design with subsampling

In this case, all levels of the treatment or all combinations of treatment levels are assigned to experimental
units completely at random, but measurements are taken by sub sampling within the experimental unit.
Ignoring the dependence that comes from sub sampling would lead to a form of pseudo-replication and this
can result in falsely claiming significance (type one error).

In the case of the previous example, it reality the researchers had taken three sub samples from each
experimental unit. The previous analysis used the mean that had already been calculated from these three
measurements. If the original data were used there may be a temptation to analyse the measurements as if
they were all independent. This would be wrong. In fact the sub samples are nested within the experimental
units.

9.5.1 Wrong analyisis for the subsampling

Any form of sub sampling potentially can lead to type one errors (p-values too small) if it is not recognised
for what it is. The reason for this is that the denominator degrees of freedom (the measure of the amount
of independent replicatation) in the anova table is too large.

Look carefully at the structure of this data frame. Each level of the factor now has three sub samples.
However these are all measures of the same quantity.
irrigation2<-read.csv("https://tinyurl.com/aqm-data/irrigation2.csv")
d<-irrigation2

str(d)

## 'data.frame': 48 obs. of 4 variables:
## $ irrigation: Factor w/ 4 levels "A","B","C","D": 1 1 1 1 1 1 1 1 1 1 ...
## $ plot : int 1 1 1 2 2 2 3 3 3 4 ...
## $ subplot : int 1 2 3 1 2 3 1 2 3 1 ...
## $ moisture : num 12.6 11.9 12.3 13 12.4 12.4 11.3 11.9 10.9 12.5 ...

This is what happens if we ignore the sub sampling and run an analysis using all the data.
d$plot<-factor(d$plot)
mod<-lm(moisture~irrigation,data=d)
anova(mod)

## Analysis of Variance Table
##
## Response: moisture
## Df Sum Sq Mean Sq F value Pr(>F)
## irrigation 3 31.832 10.6108 18.673 5.84e-08 ***
## Residuals 44 25.002 0.5682
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that this leads to a much smaller p-value. There are too many degrees of freedom in the denominator
due to the pseudoreplication.

We have already seen a good solution. Just take the means of each set of sub samples and analyse these
as measures taken from each experimental unit. This is often by far the simplest approach. It is easy to
understand and easy to explain to others.

Another way of dealing with sub sampling is to account for it by adding a random effect for the experimental
unit from which sub-samples are taken.
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There are many different ways of doing this in R. If use the aov wrapper to fit linear models for analysis of
variance we declare an error term at the plot level and add this to the model formula.
mod<-aov(moisture~irrigation+Error(plot),data=d)
summary(mod)

##
## Error: plot
## Df Sum Sq Mean Sq F value Pr(>F)
## irrigation 3 31.83 10.611 6.463 0.0075 **
## Residuals 12 19.70 1.642
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 32 5.3 0.1656

You should see that the result is almost identical to that produced through analysing the means, as it should
be.

One point to be aware of is that when you have nested sub samples within a single level of the treatment,
as occurs here, you can’t include plot as a fixed effect in the model. If you try to do this you will find that
some coefficients cannot be estimated.
mod<-lm(moisture~irrigation+plot,data=d)
summary(mod)

##
## Call:
## lm(formula = moisture ~ irrigation + plot, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.93333 -0.26667 0.03333 0.26667 0.66667
##
## Coefficients: (3 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.2667 0.2350 52.206 < 2e-16 ***
## irrigationB 0.9667 0.3323 2.909 0.006542 **
## irrigationC -1.2333 0.3323 -3.712 0.000782 ***
## irrigationD 0.9667 0.3323 2.909 0.006542 **
## plot2 0.3333 0.3323 1.003 0.323319
## plot3 -0.9000 0.3323 -2.708 0.010762 *
## plot4 -0.2000 0.3323 -0.602 0.551492
## plot5 -0.8667 0.3323 -2.608 0.013719 *
## plot6 -1.3333 0.3323 -4.013 0.000338 ***
## plot7 0.5333 0.3323 1.605 0.118314
## plot8 NA NA NA NA
## plot9 0.8667 0.3323 2.608 0.013719 *
## plot10 0.3667 0.3323 1.103 0.278059
## plot11 -1.3000 0.3323 -3.912 0.000448 ***
## plot12 NA NA NA NA
## plot13 -0.6000 0.3323 -1.806 0.080388 .
## plot14 0.7000 0.3323 2.107 0.043084 *
## plot15 -0.5000 0.3323 -1.505 0.142206
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## plot16 NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.407 on 32 degrees of freedom
## Multiple R-squared: 0.9067, Adjusted R-squared: 0.863
## F-statistic: 20.74 on 15 and 32 DF, p-value: 2.466e-12

The model can also be fit using either the lmer package or the older nlme package. The differences between
the two are rather technical. In general terms nlme can be more convenient for mixed effects models which
involve a response to a continuous variable, particularly if the response is non-linear. The newer lme4 package
can fit some very complex model involving multi-layer interactions that nlme cannot. However by default
lme4 does not provide p-values due to a deliberate decision made by its author. There is a highly technical
academic argument regarding the validity of the calculations. Fortunately, as we will often do want to report
p-values, the relevant calculations have been added by the author of the lmerTest package.
library(lmerTest)
mod<-lmer(moisture~irrigation+(1|plot),data=d)
anova(mod)

## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## irrigation 3.2111 1.0703 3 12 6.4625 0.007505 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-values are the same as would result from using the means of the sub samples in a one way anova. So
there is no obvious advantage in using the raw data rather than pooled means.

In many cases the simplest way to analyse the data is to just take the means of the sub samples and use
those, as in the first example. The exception to this is if you are interested in variability within the sub
samples. Notice that the mixed effect does provide you with an estimate of this.
summary(mod)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: moisture ~ irrigation + (1 | plot)
## Data: d
##
## REML criterion at convergence: 83.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.6115 -0.6833 0.1057 0.5153 1.3200
##
## Random effects:
## Groups Name Variance Std.Dev.
## plot (Intercept) 0.4921 0.7015
## Residual 0.1656 0.4070
## Number of obs: 48, groups: plot, 16
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 12.0750 0.3699 11.9998 32.644 4.32e-13 ***
## irrigationB 0.7417 0.5231 11.9998 1.418 0.1817
## irrigationC -1.0583 0.5231 11.9998 -2.023 0.0659 .
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## irrigationD 1.0583 0.5231 11.9998 2.023 0.0659 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) irrgtB irrgtC
## irrigationB -0.707
## irrigationC -0.707 0.500
## irrigationD -0.707 0.500 0.500

We can use the glht function with the output from fitting this model as before, and reach an identical
conclusion.
plot(glht(mod, linfct = mcp(irrigation = "Tukey")))
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summary(glht(mod, linfct = mcp(irrigation = "Tukey")))

##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = moisture ~ irrigation + (1 | plot), data = d)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## B - A == 0 0.7417 0.5231 1.418 0.48811
## C - A == 0 -1.0583 0.5231 -2.023 0.17946
## D - A == 0 1.0583 0.5231 2.023 0.17933
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## C - B == 0 -1.8000 0.5231 -3.441 0.00312 **
## D - B == 0 0.3167 0.5231 0.605 0.93041
## D - C == 0 2.1167 0.5231 4.046 < 0.001 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Always watch out for subsampling in any data set.

Never treat subsamples as independent replicates

9.6 Randomized Complete Block Design

Blocks occur when the variability between the response within sets of experimental units is expected to be
lower than the variability between sets of units. The term block comes from agricultural experiments and
is easiest to understand in this context. If different fields have different inherent fertility levels we would
expect the yield of wheat from parcels placed within each field to be similar. However the yield would vary
between fields. The idea of blocking is to account for this variability in the design of the experiment. This
can increase statistical power and reduce the number of experimental units needed.

Here is an example of a randomised complete block design. Four fields are chosen for an experiment. In
each field four plots are selected and allocated a treatment level at random. Let’s say the treatment involves
planting four different varieties of maize and recording the total yield.

The fields are blocks. Each field may have a different soil type and thus a different intrinsic fertility. In the
case of a blocked experiment we are not interested in the effect of the block. It is a confounding variable.
However it adds to the variability between treatment levels and thus may make it harder to spot real
differences between them.

Block effects need to be taken into account as if they are not the analysis may have too high a p-value
(reduced power or type 2 error). The situation is rather complicated conceptually as we can only estimate
the effects of the blocks. We don’t really know what they are.
RCB<-read.csv("https://tinyurl.com/aqm-data/RCB.csv")
d<-RCB

str(d)

## 'data.frame': 16 obs. of 3 variables:
## $ block: Factor w/ 4 levels "b1","b2","b3",..: 1 1 1 1 2 2 2 2 3 3 ...
## $ treat: Factor w/ 4 levels "t1","t2","t3",..: 1 2 3 4 1 2 3 4 1 2 ...
## $ yield: num 18.1 22.6 21.5 30.8 26 ...

9.6.1 Wrong analysis ignoring the effect of block

Let’s first look at all the sources of variability combined at the level of the treatments.
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Figure 9.2: alt text
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g1<-g0+stat_summary(fun.data=mean_cl_normal,geom="point")
g1+stat_summary(fun.data=mean_cl_normal,geom="errorbar",colour="black")



152 CHAPTER 9. DESIGN AND ANALYSIS OF EXPERIMENTS PART 1

20

30

40

t1 t2 t3 t4

treat

yi
el

d

We can fit a model ignoring the blocking effects.
mod<-lm(yield~treat,data=d)
anova(mod)

## Analysis of Variance Table
##
## Response: yield
## Df Sum Sq Mean Sq F value Pr(>F)
## treat 3 216.45 72.150 1.6991 0.2201
## Residuals 12 509.56 42.463

Notice that this suggests that there is no significant effect of the treatments.

9.6.2 Treating block as a random effect

This time we will fit a model with an error term at the block level using aov.
mod<-aov(yield~treat+Error(block),data=d)
summary(mod)

##
## Error: block
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 3 446.1 148.7
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
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## treat 3 216.45 72.15 10.23 0.00294 **
## Residuals 9 63.49 7.05
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Again, the same result can be obtained using the more powerful lmerTest package.
mod<-lmer(yield~treat+(1|block),data=d)
anova(mod)

## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## treat 216.45 72.15 3 9.0001 10.227 0.002941 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Just as previously we can look at the pattern of effects using the glht function from the multcomp package.
par(mar=c(4,8,4,2))
plot(glht(mod))
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par(mar=c(4,8,4,2))
plot(glht(mod, linfct = mcp(treat = "Tukey")))
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9.6.3 Treating block as a fixed effect

If we treat block as fixed we obtain identical results for the treatment effects. It may be advantageous to
treat the blocks as fixed if we wish to identify differences between them. For example one field may have
a very different soil fertility to the others. As blocking effects confound detection of treatment effects even
when we allow for them in the statistical model we might decide not to use this block in further trials in
order to have a more homogeneous set of initial conditions. The difference between using a fixed and random
effect in this situation is arbitrary and depends on circumstances.
mod<-aov(yield~treat+block,data=d)
anova(mod)

## Analysis of Variance Table
##
## Response: yield
## Df Sum Sq Mean Sq F value Pr(>F)
## treat 3 216.45 72.150 10.227 0.0029416 **
## block 3 446.06 148.688 21.076 0.0002086 ***
## Residuals 9 63.49 7.055
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mod)

## Df Sum Sq Mean Sq F value Pr(>F)
## treat 3 216.5 72.15 10.23 0.002942 **
## block 3 446.1 148.69 21.08 0.000209 ***
## Residuals 9 63.5 7.05
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
par(mar=c(4,8,4,2))
plot(glht(mod))
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par(mar=c(4,8,4,2))
plot(glht(mod, linfct = mcp(treat = "Tukey")))
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par(mar=c(4,8,4,2))
plot(glht(mod, linfct = mcp(block = "Tukey")))



9.7. ILLUSTATION OF HOW BLOCK EFFECTS WORK 157

0 5 10 15 20

b4 − b3

b4 − b2

b3 − b2

b4 − b1

b3 − b1

b2 − b1 (

(

(

(

(

(

)

)

)

)

)

)

95% family−wise confidence level

Linear Function

9.7 Illustation of how block effects work

We could handle the block effect “by hand”. Each block of four treatments has a mean yield that we can
calculate in R and add to our data frame.
d$block_mean<-rep(with(d,tapply(yield,block,mean)),each=4)

Look at the results of this in the data table. Now we can subtract the block mean from the yields and re-plot
our confidence intervals.
d$yield2<-d$yield-d$block_mean
g0<-ggplot(d,aes(x=treat,y=yield2))
g0+geom_boxplot()
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g1<-g0+stat_summary(fun.data=mean_cl_normal,geom="point")
g1+stat_summary(fun.data=mean_cl_normal,geom="errorbar",colour="black")
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The pattern that we detected using the analysis which took into account blocks is now clearly shown.

Now if we run an Anova you can see that the sum of squares and the mean squares are correct. The residual
sum of squares is also correct. The difference is that the denominator degrees of freedom is too high as we
have not compensated for the fact that the block means were estimated, by reducing the df by three, The
mean squares in the denominator of the F Ratio is therefore slightly too low. Looking closely at the table
should help you understand the logic.
mod<-lm(yield2~treat,data=d)
anova(mod)

## Analysis of Variance Table
##
## Response: yield2
## Df Sum Sq Mean Sq F value Pr(>F)
## treat 3 216.451 72.150 13.636 0.0003583 ***
## Residuals 12 63.494 5.291
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Although this produces an identical result in terms of the sum of squares it is preferable to declare the block
effect as either an additional additive fixed effect or a random effect in order to clearly show that the block
effects are estimated by the model and thus lead to reduced degrees of freedom.
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9.8 An observational example of sub-sampling

A researcher wants to establish if algal mat cover has an effect on species richness. The mat cover is measured
once but richness five times at each site.

This is an examle of a regression with sub-sampling. The issue to be dealt with is the difference in the
amount of replication of the measure of algal mat and the measure of richness. It can be handled either by
taking means or by using a model with a random effect included to handle nested observations.
set.seed(1)
mat<-rep(sample(1:100,10),each=5)
mat

## [1] 27 27 27 27 27 37 37 37 37 37 57 57 57 57 57 89 89 89 89 89 20 20 20
## [24] 20 20 86 86 86 86 86 97 97 97 97 97 62 62 62 62 62 58 58 58 58 58 6
## [47] 6 6 6 6
site<-rep(1:10,each=5)
richness<-round(30-0.1*mat+rnorm(50,0,4),0)
richness

## [1] 24 29 30 30 26 32 28 24 17 31 24 24 28 28 27 25 24 21 13 24 28 27 22
## [24] 26 30 27 21 23 21 16 19 19 20 25 23 23 23 27 26 21 21 26 27 24 28 31
## [47] 27 31 25 35
plot(mat,richness)
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d<-data.frame(site,mat,richness)

9.8.1 Plot the raw data

g0<-ggplot(d,aes(x=mat,y=richness))
g0+geom_point()+geom_smooth(method="lm")
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mod1<-lm(richness~mat,data=d)
summary(mod1)

##
## Call:
## lm(formula = richness ~ mat, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.5530 -1.9363 0.3984 2.3292 5.6351
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.90919 1.01005 29.611 < 2e-16 ***
## mat -0.09071 0.01645 -5.515 1.37e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.423 on 48 degrees of freedom
## Multiple R-squared: 0.3879, Adjusted R-squared: 0.3752
## F-statistic: 30.42 on 1 and 48 DF, p-value: 1.366e-06

9.8.2 Group to take mean richness at each site with same algal coverage

library (dplyr)
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d %>% group_by(site,mat) %>% summarise(richness=mean(richness)) ->d2

g0<-ggplot(d2,aes(x=mat,y=richness))
g0+geom_point()+geom_smooth(method="lm")
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mod2<-lm(richness~mat,data=d2)
summary(mod2)

##
## Call:
## lm(formula = richness ~ mat, data = d2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.49502 -0.39841 -0.03172 0.41128 1.46120
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.909188 0.549077 54.47 1.43e-11 ***
## mat -0.090708 0.008941 -10.15 7.62e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8322 on 8 degrees of freedom
## Multiple R-squared: 0.9279, Adjusted R-squared: 0.9189
## F-statistic: 102.9 on 1 and 8 DF, p-value: 7.618e-06
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9.8.3 Use raw data with a random effect for site

library(nlme)
library(merTools)
library(ggeffects)

mod3<-lme4::lmer(richness~mat +(1|site),data=d)
fit<-ggpredict(mod3, terms = "mat")
ggplot(fit, aes(x, predicted)) + geom_point(data=d,aes(y=richness,x=mat)) + geom_line() +
geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = .1)
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library(lmerTest)
mod4<-lmer(richness~mat+(1|site),data=d)
summary(mod4)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: richness ~ mat + (1 | site)
## Data: d
##
## REML criterion at convergence: 268.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.7906 -0.5656 0.1164 0.6804 1.6461
##
## Random effects:



164 CHAPTER 9. DESIGN AND ANALYSIS OF EXPERIMENTS PART 1

## Groups Name Variance Std.Dev.
## site (Intercept) 0.00 0.000
## Residual 11.72 3.423
## Number of obs: 50, groups: site, 10
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 29.90919 1.01005 48.00000 29.611 < 2e-16 ***
## mat -0.09071 0.01645 48.00000 -5.515 1.37e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## mat -0.878
## convergence code: 0
## boundary (singular) fit: see ?isSingular
anova(mod4)

## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## mat 356.48 356.48 1 48 30.419 1.366e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

9.9 Summary

Including random effects can allow for subsampling which leads to non-independent repllication. It often
will lead to similar results to the simpler technique of taking means of the subsamples. If the number of
subsamples actually varies at each observational point then a random effects model is better than one using
means, as the mean will be based on a different number of observations and may vary in reliability. A random
effects model can take this into account. In other situations the result will be very similar. Blocking differs
from subsampling as the treatment is repeated within the block (which it isn’t in a nested subsampling
design). Blocks can be treated as either fixed or random effects. The result will be the same. Treat blocks
as fixed effects if you are interested in them for some reason. Treat them as random effects if you never
want to look at individual blocks as such.

Watch out for subsampling which leads to different amounts of repication for each variable in
observational studies! This often occurs and it can lead to erroneous conclusions.

9.10 Exercises

A researcher is interested in whether dark corrugated iron strips are used more frequently by sand lizards
than plain corrugated iron. The researcher has 20 pieces of iron of each type and places them on five different
sites at Arne. The strips are inspected every day for two weeks in spring. The total number of sandlizards
found under each strip is recorded each day as the response variable (data may also be collected on weather
conditions etc.. but you can ignore this).

Design a fake data set that could be used as the template for a simple analysis of the data using an appropriate
analysis of variance. Run an analysis on the fake data.

Answer the folowing questions.
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1. What feature of the design may be considered to lead to blocking?
2. How many levels of the factor are there?
3. How might subsampling be handled?
4. Which feature of the response variable may cause particular difficulties when working with real life

data?
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Chapter 10

Repeat measures designs

Repeated measures on the same experimental subject can occur for many reasons. The typical situation is
when the measures are repeated in time, but repeated measures can also arise in other ways. The key to
understanding when a design involves repeated measures is to realise that measures which involve different
levels of the fixed factor of interest are taken from the same experimental unit. A blocked design is therefore
an example of repeated measures in space if a block is regarded as an experimental unit. However blocks
are usually thought of in terms of groups of experimental units. The terminology in the literature can be
slightly confusing in this respect as it may depend on the discipline involved and blocked designs can be
called repeated measures in some circumstances.

Let’s think of a simple example of a repeated measurement in a laboratory setting. The blood pressure of
ten rats was measured before and after the injection of a drug.
library(lmerTest)
library(ggplot2)
library(effects)
library(reshape)
library(multcomp)
library(dplyr)

d<-read.csv("https://tinyurl.com/aqm-data/rats.csv")

Repeat measures such as these lead to a situation that is fundamentally similar to a design with blocks.
Each treatment level is replicated once within each subject. However the total variability also has a between
subject component as each rat may have a different baseline blood pressure. This needs to be taken into
account.
g0<-ggplot(d,aes(x=time,y=resp))
g0+geom_boxplot()

167
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g1<- g0+stat_summary(fun.data=mean_cl_normal,geom="point")
g1+stat_summary(fun.data=mean_cl_normal,geom="errorbar",colour="black")
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10.1 Paired t-test

Just as in the blocked design failure to take into account between subject variability reduces the power of
the analysis. We can see this by running two t-tests. The first is unpaired. The second is paired.
d2<-melt(d,id=1:2,m="resp")
d2<-cast(d2,id~time)
t.test(d2$Base,d2$Treat)

##
## Welch Two Sample t-test
##
## data: d2$Base and d2$Treat
## t = -1.2157, df = 16.68, p-value = 0.241
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -21.820632 5.881527
## sample estimates:
## mean of x mean of y
## 80.32928 88.29883
t.test(d2$Base,d2$Treat,paired=TRUE)

##
## Paired t-test
##
## data: d2$Base and d2$Treat
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## t = -4.3212, df = 9, p-value = 0.00193
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -12.141652 -3.797453
## sample estimates:
## mean of the differences
## -7.969552

10.2 Mixed effects model

The design can be analysed using a mixed effect model with rat id as a random effect.

First let’s see what happens if we don’t include the random effect.
mod<-lm(resp~time,data=d)
anova(mod)

## Analysis of Variance Table
##
## Response: resp
## Df Sum Sq Mean Sq F value Pr(>F)
## time 1 317.6 317.57 1.478 0.2398
## Residuals 18 3867.7 214.87

You should see that the p-value is the same as we got from the unpaired t-test.

Now making rat id a random effect.
mod<-lmer(resp~time+(1|id),data=d)
summary(mod)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: resp ~ time + (1 | id)
## Data: d
##
## REML criterion at convergence: 135.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.42938 -0.49183 0.06957 0.55204 1.08978
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 197.86 14.066
## Residual 17.01 4.124
## Number of obs: 20, groups: id, 10
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 80.329 4.635 9.740 17.329 1.21e-08 ***
## timeTreat 7.970 1.844 9.000 4.321 0.00193 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
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## Correlation of Fixed Effects:
## (Intr)
## timeTreat -0.199
par(mar=c(4,8,4,2))
plot(glht(mod))
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Now the p-value is the same as that obtained by a paired t-test. Alternatively code this achieve the same
result.
mod<-aov(resp~time+Error(id),data=d)
summary(mod)

##
## Error: id
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 9 3715 412.7
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## time 1 317.6 317.6 18.67 0.00193 **
## Residuals 9 153.1 17.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

You should also be able to see the fundamental similarity between this situation and one involving blocking
with respect to the specification of the model. However in a classic block design the blocks are considered
to be groups of experimental units rather than individual experimental units. This can lead to confusion
and model mispecification if you are not careful. A block design must have repeated measures with different
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levels of treatment within each block, just as a repeat measure design has different treatment levels within
each subject. These simple examples can be extended to produce more complex designs.

10.3 Repeat measures with subsampling

One way the repeat measures design can be extended is with sub sampling. Take this example. A researcher
is interested in the impact of sewage treatment plants outfalls on the diversity of river invertebrates. In order
to produce a paired design kick samples are taken 100m above the outfall and 100m below the outfall in five
rivers. This leads to a total of ten sites. At each site three kicks are obtained. These three measurements
are thus sub-samples.
d<-read.csv("https://tinyurl.com/aqm-data/river.csv")
g0<-ggplot(d,aes(x=sewage,y=nspecies))

10.3.1 Visualising the data

If we pool all the data points taken below and above the sewage outfall we would not be taking into account
the variability between rivers. We would also not be taking into account the potential for “pseudo-replication”
as a result of the sub-sampling.
g0+geom_boxplot()
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We can still obtain confidence intervals, but they would be based on a simplistic model that does not take
into account the true data structure.
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g1<-g0+stat_summary(fun.data=mean_cl_normal,geom="point")+stat_summary(fun.data=mean_cl_normal,geom="errorbar",colour="black")
g1
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We could try splitting the data by river in order to visualise the pattern of differences.
g1+facet_wrap(~id)
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10.3.2 Incorrect model specification.

We could think of river id as a fixed effect. This may be reasonable if we are interested in differences between
rivers. However it does not take into account the fact that the data consists of sub samples at each site. So
the model below would be wrong.
mod<-lm(nspecies~sewage+id,data=d)
anova(mod)

## Analysis of Variance Table
##
## Response: nspecies
## Df Sum Sq Mean Sq F value Pr(>F)
## sewage 1 564.48 564.48 25.0596 9.454e-06 ***
## id 4 850.40 212.60 9.4382 1.344e-05 ***
## Residuals 44 991.12 22.53
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

10.3.3 Mixed effect model

The data could be modelled as nested random effects. There is random variability between rivers and there
is also random variability between sites at each river. The fixed effect that we are most interested in concerns
whether the site is above or below the sewage outfall.
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mod<-lmer(nspecies~sewage+(1|id/site),data=d)
summary(mod)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: nspecies ~ sewage + (1 | id/site)
## Data: d
##
## REML criterion at convergence: 300.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.59547 -0.71758 -0.05326 0.60059 2.36669
##
## Random effects:
## Groups Name Variance Std.Dev.
## site:id (Intercept) 2.694 1.641
## id (Intercept) 17.789 4.218
## Residual 21.300 4.615
## Number of obs: 50, groups: site:id, 10; id, 5
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 33.560 2.225 5.272 15.086 1.54e-05 ***
## sewageBelow -6.720 1.668 4.001 -4.029 0.0157 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## sewageBelow -0.375
par(mar=c(4,8,4,2))
plot(glht(mod))
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We could also treat river as a fixed effect if we are specifically interested in differences between rivers.
mod<-lmer(nspecies~sewage+id+(1|site),data=d)
anova(mod)

## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## sewage 345.7 345.7 1 4 16.2300 0.01575 *
## id 520.8 130.2 4 4 6.1127 0.05374 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mod)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: nspecies ~ sewage + id + (1 | site)
## Data: d
##
## REML criterion at convergence: 275.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.54770 -0.70432 -0.04561 0.61090 2.41441
##
## Random effects:
## Groups Name Variance Std.Dev.
## site (Intercept) 2.696 1.642
## Residual 21.300 4.615
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## Number of obs: 50, groups: site, 10
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 31.360 2.043 4.000 15.350 0.000105 ***
## sewageBelow -6.720 1.668 4.000 -4.029 0.015751 *
## idriver_2 0.100 2.637 4.000 0.038 0.971572
## idriver_3 3.700 2.637 4.000 1.403 0.233304
## idriver_4 9.500 2.637 4.000 3.602 0.022718 *
## idriver_5 -2.300 2.637 4.000 -0.872 0.432392
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) swgBlw idrv_2 idrv_3 idrv_4
## sewageBelow -0.408
## idriver_2 -0.645 0.000
## idriver_3 -0.645 0.000 0.500
## idriver_4 -0.645 0.000 0.500 0.500
## idriver_5 -0.645 0.000 0.500 0.500 0.500
par(mar=c(4,8,4,2))
plot(glht(mod))
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Notice that both models provide the same p-value for the effect of the sewage outfalls.

Using nested random effects produces an almost identical result to that which would be obtained by taking
the means of the sub samples, as we have seen in previous examples.
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# dd<-melt(d,m="nspecies") reshape method of aggregation
# dd1<-cast(dd,id+sewage~variable,mean)
## Dplyr method
d %>% group_by(id,sewage) %>% summarise(nspecies=mean(nspecies)) ->dd
mod<-lm(nspecies~id+sewage,data=dd)
anova(mod)

## Analysis of Variance Table
##
## Response: nspecies
## Df Sum Sq Mean Sq F value Pr(>F)
## id 4 170.080 42.520 6.1127 0.05374 .
## sewage 1 112.896 112.896 16.2300 0.01575 *
## Residuals 4 27.824 6.956
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Factorial designs

Factorial designs refer to situations in which more than one factor is of interest. There are various reasons
to use more than one factor in an experiment. In some cases it may save time and money to measure the
effects of two factors simultaneously. This makes sense if the factors are additive, with no interactions. In
other situations we may actually be interested in looking for interactions between two factors. Altering the
level of one factor may alter the effect of another.

Let’s look at an example. An experimenter was interested in the effect of irrigation on the yield of two
varieties of wheat. The design involved assigning variety and irrigation treatment at random to 24 plots in
order to have 6 replicates of each combination of treatment levels (v1:i1,v1:i2,v2:i1 and v2:i2)

For the moment let’s ignore the possibilities of setting up the experiment within blocks and assume that the
experimental units are uniform prior to treatment and are independent of each other.
d<-read.csv("https://tinyurl.com/aqm-data/factorial.csv")

We can look at the results as box plots by conditioning on one of the factors using facet wrapping.
g0<-ggplot(d,aes(x=irrigation,y=yield))
g0+geom_boxplot()+facet_wrap(~variety)
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Figure 11.1:
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We can also look at confidence intervals.
g1<-g0+stat_summary(fun.data=mean_cl_normal,geom="point")
g1<-g1+stat_summary(fun.data=mean_cl_normal,geom="errorbar",colour="black")
g1+facet_wrap(~variety)
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11.1 Model fitting

There are no random effects in this design, so a simple linear model can be used. Typing an asterix (*) in
the model formula fits a model with main effects and an interaction.
mod<-lm(yield~irrigation*variety,data=d)
anova(mod)

## Analysis of Variance Table
##
## Response: yield
## Df Sum Sq Mean Sq F value Pr(>F)
## irrigation 1 113.600 113.600 28.9293 2.897e-05 ***
## variety 1 208.128 208.128 53.0020 4.845e-07 ***
## irrigation:variety 1 0.001 0.001 0.0003 0.9854
## Residuals 20 78.536 3.927
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mod)

##
## Call:
## lm(formula = yield ~ irrigation * variety, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
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## -4.4064 -0.9752 0.4121 1.0838 2.7629
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.18679 0.80899 12.592 5.78e-11 ***
## irrigationi2 4.33623 1.14409 3.790 0.00115 **
## varietyv2 5.87464 1.14409 5.135 5.05e-05 ***
## irrigationi2:varietyv2 0.03003 1.61798 0.019 0.98538
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.982 on 20 degrees of freedom
## Multiple R-squared: 0.8038, Adjusted R-squared: 0.7744
## F-statistic: 27.31 on 3 and 20 DF, p-value: 2.836e-07

You should be able to see that the interaction term in this case is not significant. The effects package allows
us to look at the pattern of effects visually.
e <- Effect(c("irrigation","variety"), mod)
plot(e)
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You can see that the lines between the two levels of the factors follow the same slope but are moved up. This
is indicative of additive effects. We could therefore fit a simpler model
mod<-lm(yield~irrigation+variety,data=d)
anova(mod)

## Analysis of Variance Table
##
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## Response: yield
## Df Sum Sq Mean Sq F value Pr(>F)
## irrigation 1 113.600 113.60 30.375 1.811e-05 ***
## variety 1 208.128 208.13 55.651 2.478e-07 ***
## Residuals 21 78.537 3.74
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mod)

##
## Call:
## lm(formula = yield ~ irrigation + variety, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3989 -0.9827 0.4196 1.0876 2.7704
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.1793 0.6837 14.888 1.24e-12 ***
## irrigationi2 4.3512 0.7895 5.511 1.81e-05 ***
## varietyv2 5.8897 0.7895 7.460 2.48e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.934 on 21 degrees of freedom
## Multiple R-squared: 0.8038, Adjusted R-squared: 0.7851
## F-statistic: 43.01 on 2 and 21 DF, p-value: 3.747e-08

11.2 Experiment with interactions

Let’s look at data from the same experimental set up, but in this case there is an interaction.
d<-read.csv("https://tinyurl.com/aqm-data/factorial2.csv")
head(d)

## variety irrigation yield
## 1 v1 i1 8.747092
## 2 v1 i2 7.367287
## 3 v2 i1 13.328743
## 4 v2 i2 23.190562
## 5 v1 i1 10.659016
## 6 v1 i2 5.359063

The pattern is apparent in the box plots.
g0<-ggplot(d,aes(x=irrigation,y=yield))
g0+geom_boxplot()+facet_wrap(~variety)
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g1<-g0+stat_summary(fun.data=mean_cl_normal,geom="point")
g1<-g1+stat_summary(fun.data=mean_cl_normal,geom="errorbar",colour="black")
g1+facet_wrap(~variety)
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Now if we fit a model we will find a very significant interaction.
mod<-lm(yield~irrigation*variety,data=d)
anova(mod)

## Analysis of Variance Table
##
## Response: yield
## Df Sum Sq Mean Sq F value Pr(>F)
## irrigation 1 0.74 0.74 0.1885 0.6688
## variety 1 586.83 586.83 149.4427 9.789e-11 ***
## irrigation:variety 1 96.72 96.72 24.6313 7.484e-05 ***
## Residuals 20 78.54 3.93
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mod)

##
## Call:
## lm(formula = yield ~ irrigation * variety, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4064 -0.9752 0.4121 1.0838 2.7629
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.187 0.809 12.592 5.78e-11 ***
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## irrigationi2 -3.664 1.144 -3.202 0.00447 **
## varietyv2 5.875 1.144 5.135 5.05e-05 ***
## irrigationi2:varietyv2 8.030 1.618 4.963 7.48e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.982 on 20 degrees of freedom
## Multiple R-squared: 0.897, Adjusted R-squared: 0.8816
## F-statistic: 58.09 on 3 and 20 DF, p-value: 4.713e-10

The first variety does not respond positively to irrigation. In fact yield may be reduced through over
watering. In this case the effects are not additive. They are conditional on the level of one of the factors.
In this situation the main effects of irrigation or variety can be difficult to interpret as they represent the
average effect taken over both levels of the other factor.
e <- Effect(c("irrigation","variety"), mod)
plot(e)
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Interactions are very common in many ecological situations. Although some textbooks on experimental
design treat interactive effects as undesirable, finding interactions is an interesting result. In this case the
discussion of the results could concentrate on finding an explanation for the difference in response between
the two varieties.

11.3 Full factorial with blocking

The previous example treated each experimental unit as independent. In many situations there is some
spatial dependence between experimental units.
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Figure 11.2: alt text
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d<-read.csv("https://tinyurl.com/aqm-data/factorial_block.csv")
head(d)

## variety field field_effect irrigation yield
## 1 v1 field_1 -2.5058152 i1 8.469043
## 2 v1 field_1 -2.5058152 i2 13.970834
## 3 v2 field_1 -2.5058152 i1 13.645747
## 4 v2 field_1 -2.5058152 i2 16.883408
## 5 v1 field_2 0.7345733 i1 13.758136
## 6 v1 field_2 0.7345733 i2 16.514260

Once again, the potential advantage of taking into account blocking is to increase the power of the analysis.
If the intrinsic variability between blocks is contributing to the variability in the response of the experimental
units then accounting for it in the statistical model will increase power.

This can be seen in this example by first plotting the raw data.
g0<-ggplot(d,aes(x=irrigation,y=yield))
g0+geom_boxplot()+facet_wrap(~variety)
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g1<-g0+stat_summary(fun.data=mean_cl_normal,geom="point")
g1<-g1+stat_summary(fun.data=mean_cl_normal,geom="errorbar",colour="black")
g1+facet_wrap(~variety)
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11.3.1 Model not taking into account blocks

If we don’t take into account the variability attributable to the blocks in the model we lose statistical power.
mod<-lm(yield~variety*irrigation,data=d)
anova(mod)

## Analysis of Variance Table
##
## Response: yield
## Df Sum Sq Mean Sq F value Pr(>F)
## variety 1 135.24 135.238 6.6790 0.01772 *
## irrigation 1 87.57 87.567 4.3246 0.05064 .
## variety:irrigation 1 2.96 2.962 0.1463 0.70614
## Residuals 20 404.97 20.248
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Effects plot.
e <- Effect(c("irrigation","variety"), mod)
plot(e)
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11.3.2 Model with block as a random effect.

Block can be fitted as a random effect using lmer.
mod<-lmer(yield~variety*irrigation+(1|field),data=d)
summary(mod)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: yield ~ variety * irrigation + (1 | field)
## Data: d
##
## REML criterion at convergence: 103
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.98922 -0.49404 -0.04189 0.55337 1.34688
##
## Random effects:
## Groups Name Variance Std.Dev.
## field (Intercept) 16.991 4.122
## Residual 3.257 1.805
## Number of obs: 24, groups: field, 6
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 11.172 1.837 6.426 6.082 0.000695 ***



192 CHAPTER 11. FACTORIAL DESIGNS

## varietyv2 4.045 1.042 15.000 3.882 0.001474 **
## irrigationi2 3.118 1.042 15.000 2.992 0.009119 **
## varietyv2:irrigationi2 1.405 1.474 15.000 0.954 0.355380
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) vrtyv2 irrgt2
## varietyv2 -0.284
## irrigation2 -0.284 0.500
## vrtyv2:rrg2 0.201 -0.707 -0.707

Now notice how the effects plot shows more effects of the treatment.
e <- Effect(c("irrigation","variety"), mod)
plot(e)
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11.4 Split plot

In all the previous examples there have been alternatives available to the use of mixed models with random
and fixed effects. In the case of situations involving sub sampling the dependence between sub samples
can be dealt with by taking means for each experimental unit. In the cases in which variability occurs
between blocks it is possible to include blocks in a model as a fixed effect. Repeat measures designs can use
differences within subjects as responses. However there are some more complex situations in which the sum
of squares attributed to the variability attributed to different treatments should be compared with different
error terms. A classic example is the split plot design in agriculture. The split plot design arose simply as
a form of reducing the cost and difficulty of setting up field experiments. When treating field plots it can
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Figure 11.3:

sometimes be much easier to set up some treatments for larger areas than a smaller one. Imagine the case
in the yield experiment we have been looking at in which whole fields are planted with single varieties of
wheat and each field is split into two forms of irrigation treatment.

In some respects you could argue that not much has changed from the block design. However if each main
field has a different response then the error term for variety will have fewer degrees of freedom than that for
irrigation as the same variety has been planted in each field which is then “split” into two levels of irrigation.
So effectively there is less independent replication of variety than of irrigation.

If this is not taken into account there may be an accusation of “pseudo replication” with respect to the effect
of variety as the anlysis would potentially treat all subplots as independent replicates without taking into
account the fact that they are nested within field. However this is a problem if there are shared effects at
the field level. If it were possible to ensure as much independence between subplots within the same field as
between subplots as a whole it wouldn’t matter.

Here is a dataframe with results from the split plot experiment shown above.
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d<-read.csv("https://tinyurl.com/aqm-data/split_plot.csv")
str(d)

## 'data.frame': 24 obs. of 5 variables:
## $ variety : Factor w/ 2 levels "v1","v2": 1 1 2 2 1 1 2 2 1 1 ...
## $ field : Factor w/ 12 levels "field_1","field_10",..: 1 1 5 5 6 6 7 7 8 8 ...
## $ field_effect: num -2.506 -2.506 0.735 0.735 -3.343 ...
## $ irrigation : Factor w/ 2 levels "i1","i2": 1 2 1 2 1 2 1 2 1 2 ...
## $ yield : num 6.25 8.06 17.98 20.64 6.63 ...

11.4.1 Visualising the data

We can look at the data as boxplots.
g0<-ggplot(d,aes(x=irrigation,y=yield))
g0+geom_boxplot()+facet_wrap(~variety)
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g1<-g0+stat_summary(fun.data=mean_cl_normal,geom="point")
g1<- g1+stat_summary(fun.data=mean_cl_normal,geom="errorbar",colour="black")
g1+facet_wrap(~variety)
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11.4.2 Incorrect model

The naive way of analysing the data would overlook the potential for a field effect.
mod<-lm(yield~variety*irrigation,data=d)
anova(mod)

## Analysis of Variance Table
##
## Response: yield
## Df Sum Sq Mean Sq F value Pr(>F)
## variety 1 141.55 141.550 7.5656 0.01233 *
## irrigation 1 93.88 93.875 5.0175 0.03661 *
## variety:irrigation 1 3.06 3.059 0.1635 0.69027
## Residuals 20 374.19 18.710
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

11.4.3 Correct model

mod<-lmer(yield~variety*irrigation+(1|field),data=d)
anova(mod)

## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
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## variety 8.503 8.503 1 10 4.0100 0.07308 .
## irrigation 93.875 93.875 1 10 44.2701 5.684e-05 ***
## variety:irrigation 3.059 3.059 1 10 1.4424 0.25743
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mod)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: yield ~ variety * irrigation + (1 | field)
## Data: d
##
## REML criterion at convergence: 107.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.31217 -0.32739 0.08055 0.44805 1.21676
##
## Random effects:
## Groups Name Variance Std.Dev.
## field (Intercept) 16.589 4.073
## Residual 2.121 1.456
## Number of obs: 24, groups: field, 12
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 11.2319 1.7659 11.1971 6.361 4.95e-05 ***
## varietyv2 5.5711 2.4973 11.1971 2.231 0.047051 *
## irrigationi2 4.6695 0.8407 10.0000 5.554 0.000243 ***
## varietyv2:irrigationi2 -1.4279 1.1890 10.0000 -1.201 0.257430
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) vrtyv2 irrgt2
## varietyv2 -0.707
## irrigation2 -0.238 0.168
## vrtyv2:rrg2 0.168 -0.238 -0.707
par(mar=c(4,12,4,2))
plot(glht(mod))
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mod<-aov(yield~variety*irrigation+Error(field),data=d)
summary(mod)

##
## Error: field
## Df Sum Sq Mean Sq F value Pr(>F)
## variety 1 141.5 141.6 4.01 0.0731 .
## Residuals 10 353.0 35.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## irrigation 1 93.88 93.88 44.270 5.68e-05 ***
## variety:irrigation 1 3.06 3.06 1.442 0.257
## Residuals 10 21.21 2.12
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Chapter 12

Generalised linear models

So far we have assumed throughout that the variability in our models takes an approximately normal form.
This is the assumption used in the classical parametric statistical tests and in regression, ANOVA and
ANCOVA. Violations of the assumption often lead to the adoption of simple non parametric tests instead
of more informative model based procedures due to worries about not meeting the assumptions needed for
parametric modelling. However the set of models, known as Generalised Linear Models (GLMs) can use any
known distribution for the errors. These are very powerful techniques. They are not much more difficult to
apply using R than the methods that you have already seen. However careful thought is required in order
to find the correct form for the model.

12.1 Poisson regression

Let’s look at the marine invertebrates data that we saw earlier.
d<-read.csv("https://tinyurl.com/aqm-data/marineinverts.csv")
str(d)

## 'data.frame': 45 obs. of 4 variables:
## $ richness: int 0 2 8 13 17 10 10 9 19 8 ...
## $ grain : num 450 370 192 194 197 ...
## $ height : num 2.255 0.865 1.19 -1.336 -1.334 ...
## $ salinity: num 27.1 27.1 29.6 29.4 29.6 29.4 29.4 29.6 29.6 29.6 ...

Plotting species richness against grain size again.
attach(d)
plot(d$richness~d$grain)

199
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In the previous analysis we looked at how allowing the model to adopt a curved form led to a better fit.
However the issue of the inappropriate use of the normal distribution to represent the error term was ignored.

One way of thinking about the situation is to remember that the description of a regression line includes
some statement about the errors.

y = a + bx + ϵ where ϵ = N(o, σ2)

This equation should be able to describe the process that leads to each data point. The model has a
deterministic component (the regression line) and a stochastic component (the error term). However when
the points are counts a continuous error term is incorrect. Although the mean value (trend) does not have
to be an integer value, the actual data values do. So the errors around the trend should be discrete.

The poisson distribution can represent this. For any value of lambda (which is continuous) the probability
distribution of values is discrete. The poisson distribution automatically builds in heterogeniety of variance
as the variance of a poisson distribution is in fact equal to lambda.
par(mfcol=c(2,2))
barplot(dpois(0:5,lambda=0.1),names=0:5,main="Lambda=0.1")
barplot(dpois(0:5,lambda=0.5),names=0:5,main="Lambda=0.5")
barplot(dpois(0:5,lambda=1),names=0:5,main="Lambda=1")
barplot(dpois(0:5,lambda=2),names=0:5,main="Lambda=2")
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Let’s think of a regression line with poisson errors with a=0, and b=1.

y = a + bx + ϵ where ϵ = poisson(lambda = y)

Something interesting happens in this case. Lambda is a measure of the central tendency, but for most of
the regression line no observations can actually take the value of lambda. A point can only fall on the line
when lambda happens to be an integer.
lambda<-seq(0,10,length=200)
plot(lambda,rpois(200,lambda),pch=21,bg=2)
lines(lambda,lambda,lwd=2)
abline(v=0:10,lty=2)
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This is the motive for fitting using maximum likelihood. A point that falls a long way away from the
deterministic component of a model contributes more to the model’s deviance than one that is close. A
model with a low total deviance has a higher likelihood than one with a high deviance. The probabilities
(that contribute to the deviance) are determined from assumptions regarding the form of the stochastic
component of the model. The normal distribution is only one form of determining these probabilities. There
are many other possible distributions for the error term.

So let’s fit the model again, this time using poisson regression. By default this uses a log link function. This
is usually appropriate for count data that cannot fall below zero. In this case the logarithmic link function
also deals nicely with the problem of curvilinearity of the response.
mod1<-glm(data=d,richness ~ grain,family=poisson)
summary(mod1)

##
## Call:
## glm(formula = richness ~ grain, family = poisson, data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.4828 -1.3897 -0.0732 0.8644 2.5838
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.238393 0.299033 14.174 < 2e-16 ***
## grain -0.009496 0.001179 -8.052 8.16e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 179.75 on 44 degrees of freedom
## Residual deviance: 105.35 on 43 degrees of freedom
## AIC: 251.35
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##
## Number of Fisher Scoring iterations: 5
confint(mod1)

## 2.5 % 97.5 %
## (Intercept) 3.65451714 4.827458978
## grain -0.01185141 -0.007224939

Plotting the model shows it’s form. Note that with when fitting a GLM in R we can ask for the standard
errors and produce approximate confidence intervals using them.
plot(d$richness ~ d$grain)
x<-seq(min(d$grain),max(d$grain),length=100)
a<-predict(mod1,newdata=list(grain=x),type="response",se=T)
lines(x,a$fit-2*a$se.fit,lty=2)
lines(x,a$fit+2*a$se.fit,lty=2)
lines(x,a$fit)
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12.2 GGplot

Its easy to add a glm to a ggplot scatterplot. However be careful to add in the methods.args.
library(ggplot2)
g0<-ggplot(d,aes(x=grain,y=richness))
glm1<-g0+geom_point()+stat_smooth(method="glm",method.args=list( family="poisson"), se=TRUE) +ggtitle("Poisson regression with log link function")
glm1
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Poisson regression with log link function

12.3 Showing the results with logged y

This is not a good approach, as the zeros are lost, but it demonstrates the idea.
plot(d$richness ~d$grain, log="y")
x<-seq(min(grain),max(grain),length=100)
a<-predict(mod1,newdata=list(grain=x),type="response",se=T)
lines(x,a$fit-2*a$se.fit,lty=2)
lines(x,a$fit+2*a$se.fit,lty=2)
lines(x,a$fit)
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12.4 Log link function explained

The coefficients of the model when we ask for a summary are rather hard to undertand.
summary(mod1)

##
## Call:
## glm(formula = richness ~ grain, family = poisson, data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.4828 -1.3897 -0.0732 0.8644 2.5838
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.238393 0.299033 14.174 < 2e-16 ***
## grain -0.009496 0.001179 -8.052 8.16e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 179.75 on 44 degrees of freedom
## Residual deviance: 105.35 on 43 degrees of freedom
## AIC: 251.35
##
## Number of Fisher Scoring iterations: 5

The slope is given as -0.009. What does this mean? Unlike a regeression slope it is NOT the change in y
for a unit change in x, as we are using a logarithmic link function.
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In generalized linear models, there is always some sort of link function, which is the link between the mean
of Y on the left and the predictor variable on the right. It is possible to use the identity link, which leaves
the result the same, but typically some other link function is used. The identity link is not a good choice for
data with many zeros.

Formally the link function is ..

f(y|x) = a + bx

I.e. Some function of the conditional value of y on x, ignoring the residual error, is predicted by a regression
equation rather than simply y.

The log link function exponentiates the linear predictors. It does not actually involve a log transform of
the outcome variable.

y = exp(a + bx)

Which could be also written as ..

y = ea+bx

As the logarithm used is the natural logarithm this implies that expected value of y is multiplied by exp(b)
as we increase the value of x by 1 unit.

This is not intuitive.

Exponentiating the coefficients in R for the model above produces this result..
exp(coef(mod1))

## (Intercept) grain
## 69.2963902 0.9905485

So, the intercept,for a grain size of zero is 69.3 and for each unit increase in grain size the diversity is changed
by 99.055 % of the previous value. This is a process of exponential decay, as the richness is falling away
steadily with each unti increase in grain size, but the model never leads to a predicted species richness below
zero.

One way to make all this a little more understandable is to divide the natural logarithm of 2 (0.69) by the
raw slope coefficient, which was found to be -0.009.
log(2)/(coef(mod1)[2])

## grain
## -72.99001

This is using the formula for the half life, or doubling time, in an expenential decay or growth model.

So, in order to double the expected species richness we therefore would have to change the grain size by
-72.99 units.

When presenting the results to a mathematically sophisticated audience you can safely place the coefficients
within the equation and expect the audience to make sense of it.

y = ea+bx

When explaining the result in words you can say that a change in grain size of -72.99 leads to doubling of
expected species richness.

Showing a scatterplot with the fitted line is usually the easiest way to visualise the model and to make sense
of it intuitively.
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12.4.1 Likelihood and deviance

In order to fully understand all the elements used when analysing a GLM we also need at least an intuitive
understanding of the concepts of likelihood and deviance.

Models are fit by maximising the likelihood. But, what is the likelihood?

To try to inderstand this, let’s first obtain some simple count data. We can simulate the counts from a
poisson distribution.
set.seed(1)
x<-rpois(10,lambda=2)
x

## [1] 1 1 2 4 1 4 4 2 2 0
barplot(table(x))
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We can fit a simple model that just involves the intercept (mean) using R. This is.
mod<-glm(x~1,poisson(link="identity"))
summary(mod)

##
## Call:
## glm(formula = x ~ 1, family = poisson(link = "identity"))
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.04939 -0.84624 -0.06957 0.85560 1.16398
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.1000 0.4583 4.583 4.59e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
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##
## Null deviance: 10.427 on 9 degrees of freedom
## Residual deviance: 10.427 on 9 degrees of freedom
## AIC: 36.066
##
## Number of Fisher Scoring iterations: 3
coef(mod)

## (Intercept)
## 2.1
confint(mod)

## 2.5 % 97.5 %
## 1.325155 3.130620
lam<-coef(mod)

Now, under the poisson model we can calculate a probability of getting any integer from a poisson distribution
with a mean of lambda using a standard formula that is built into R. So the probability of getting a zero is
dpois(0,lambda=2.1)

dpois(0,lambda=2.1)=0.122

dpois(1,lambda=2.1)=0.257

dpois(2,lambda=2.1)= 0.27

dpois(3,lambda=2.1)=0.189

dpois(4,lambda=2.1)=0.099

What this means is that we have a probability (likelihood) for each of the data points given the model
parameter (lambda). We can look at this as a barplot of counts of each probability value.
dx<-dpois(x,lambda=lam)
dx

## [1] 0.25715850 0.25715850 0.27001642 0.09923104 0.25715850 0.09923104
## [7] 0.09923104 0.27001642 0.27001642 0.12245643
barplot(table(round(dx,3)))
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The probability of getting EXACTLY the data that we have is the product of all these probabilities, as we
find the combined probability of independent events by multiplying them together. Because this is going to
result in very small numbers it is usually easier to work with logarithmns and add them together. Hence the
term log likelihood that you will see used in all treatments of GLMs.
loglik<-sum(log(dx))
loglik

## [1] -17.03292
logLik(mod)

## 'log Lik.' -17.03292 (df=1)

OK, so that was not too difficult. Notice as well that this calculation gave us the maximum likelihood. If we
had used any other value as an estimate for lambda we would have got a lower value expressed as a negative
value.
sum(log(dpois(x,lambda=1)))

## [1] -21.6136
sum(log(dpois(x,lambda=lam)))

## [1] -17.03292
sum(log(dpois(x,lambda=3)))

## [1] -18.54274

In order to simplify matters further we remove the sign and work with -2 log likelihood.
-2*sum(log(dpois(x,lambda=lam)))

## [1] 34.06584

The AIC which we will look at later in the course as a way of comparing two models combines the -2 log
likelihood with the number of parameters (k). In this case we have just one parameter so AIC adds 2 to the
number we previously calculated.

AIC=2k-2ln(L)
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AIC(mod)

## [1] 36.06584

Now finally, what does the deviance refer to?

Well, even a model which has a separate parameter for each data point will still have a likelihood below one.
The deviance refers to the difference in -2 log likelihood between the fully saturated model and the actual
model. We can get the -2 log likelihood for this model as well.
dpois(x,lambda=x)

## [1] 0.3678794 0.3678794 0.2706706 0.1953668 0.3678794 0.1953668 0.1953668
## [8] 0.2706706 0.2706706 1.0000000
satmod<--2*sum(log(dpois(x,lambda=x)))
satmod

## [1] 23.63838

Just to confirm, this should give us the deviance.
-2*loglik-satmod

## [1] 10.42746
deviance(mod)

## [1] 10.42746

Notice that we had ten data points (residual degrees of freedom = n-1 = 9) and a residual deviance that
is around 10. This is an indication that the assumption of Poisson distributed residuals is a reasonable one
as for mathematical reasons that we need not go into we would expect an addition of just under 1 to the
deviance for each additional data point.

Going back to the summary of the model
summary(mod)

##
## Call:
## glm(formula = x ~ 1, family = poisson(link = "identity"))
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.04939 -0.84624 -0.06957 0.85560 1.16398
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.1000 0.4583 4.583 4.59e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 10.427 on 9 degrees of freedom
## Residual deviance: 10.427 on 9 degrees of freedom
## AIC: 36.066
##
## Number of Fisher Scoring iterations: 3
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We can see that in this artificial case the null deviance and the residual deviance are identical. This is because
the null is “true”. There is nothing to report in the model apart from the intercept, i.e. a single value for
lambda. If we use this concept in a model with a predictor variable we should see a difference between these
two numbers. The larger the diffence, the more of the deviance is “explained” by our predictor. We want to
reduce the deviance bt fitting a model, so if there is a relationship the residual deviance should always be
lower than the null deviance.

12.4.1.1 Overdispersion

If the residual deviance is larger than residual degrees of freedom we have overdispersion (extra, unexplained
variation in the response).
summary(mod1)

##
## Call:
## glm(formula = richness ~ grain, family = poisson, data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.4828 -1.3897 -0.0732 0.8644 2.5838
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.238393 0.299033 14.174 < 2e-16 ***
## grain -0.009496 0.001179 -8.052 8.16e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 179.75 on 44 degrees of freedom
## Residual deviance: 105.35 on 43 degrees of freedom
## AIC: 251.35
##
## Number of Fisher Scoring iterations: 5

This means that in fact the measured variance in the data, after taking into account the regression line, is
still larger than the lambda values over the range of the regression. This is extra variability that goes beyond
that expected under the assumption that the residuals are poisson distributed.

This is the diagnostic tool which is used in Poisson regression. The point is that under a poisson distribution
the variance is fixed. It is always identical to the mean (lamda). This may not be a reasonable assumption,
but it is the assumption being made. If it is not met we will need to make some compensation for this in
order to produce a more justifiable model.

12.4.1.2 Quasi-poisson regression

A simple way of dealing with over dispersion is to use so called quasi-poisson regression. This finds a weight
so that instead of assuming that the variance is equal to lambda the assumption is made that it is equal to
some multiple of lambda. The multiple is estimated from the data. The effect is to reduce the significance
of the regression term and widen the confidence intervals. It is a rather outdated technique that has some
problems, but we’ll try it anyway.
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mod2<-glm(richness ~ grain,family=quasipoisson)

## Error in model.frame.default(formula = richness ~ grain, drop.unused.levels = TRUE): variable lengths differ (found for 'grain')
summary(mod2)

##
## Call:
## lm(formula = richness ~ mat, data = d2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.49502 -0.39841 -0.03172 0.41128 1.46120
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.909188 0.549077 54.47 1.43e-11 ***
## mat -0.090708 0.008941 -10.15 7.62e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8322 on 8 degrees of freedom
## Multiple R-squared: 0.9279, Adjusted R-squared: 0.9189
## F-statistic: 102.9 on 1 and 8 DF, p-value: 7.618e-06
AIC(mod2)

## [1] 28.47456
confint(mod2)

## 2.5 % 97.5 %
## (Intercept) 28.6430130 31.17536233
## mat -0.1113255 -0.07009151

Notice that the confidence intervals are wider. However we cannot obtain a value for AIC from a quasi model
as the likelihood function is not fully defined. This limits the application of quasi poisson models, so we’ll
pass on quickly to a rather more useful approach..
glm2<-g0+geom_point()+geom_smooth(method="glm", method.args=list(family="quasipoisson"), se=TRUE) + ggtitle("Quasipoisson regression")
glm2
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12.4.2 Negative binomial regression

As we have seen, there is a problem with quasi poisson regression.There is no defined form for the likelihood.
Therefore it is impossible to calculate AIC. This makes it difficult to run model comparisons using quasi
poisson models. An alternative is to fit the model assuming a negative binomial distribution for the error
terms. This is a well defined model for over dispersed count data.
library(MASS)
mod3<-glm.nb(richness ~ grain)

## Error in model.frame.default(formula = richness ~ grain, drop.unused.levels = TRUE): variable lengths differ (found for 'grain')
summary(mod3)

## Linear mixed model fit by REML ['lmerMod']
## Formula: richness ~ mat + (1 | site)
## Data: d
##
## REML criterion at convergence: 268.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.7906 -0.5656 0.1164 0.6804 1.6461
##
## Random effects:
## Groups Name Variance Std.Dev.
## site (Intercept) 0.00 0.000
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## Residual 11.72 3.423
## Number of obs: 50, groups: site, 10
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 29.90919 1.01005 29.611
## mat -0.09071 0.01645 -5.515
##
## Correlation of Fixed Effects:
## (Intr)
## mat -0.878
## convergence code: 0
## boundary (singular) fit: see ?isSingular
confint(mod3)

## 2.5 % 97.5 %
## .sig01 0.0000000 1.18505144
## .sigma 2.7904493 4.13658715
## (Intercept) 27.9316552 31.88672006
## mat -0.1229084 -0.05850855

Notice that the AIC for the negative binomial model is much lower than that for the (incorrect) poisson
model. The residual deviance is now not much larger than the residual degrees of freedom. It is very
important to include the overdispersion rather than use the assumption that the variance is equal to lambda
that is built into poisson regression.
AIC(mod1)

## [1] 251.3523
AIC(mod3)

## [1] 276.9441

The variance of the negative binomial is

var = µ + µ2

θ

So theta controls the excess variability compared to Poisson. The smaller the value of theta the more skewed
the distribution becomes.
par(mfcol=c(2,2))
hist(rnegbin(n=10000,mu=10,theta=100),main="Theta=100",col="grey")
hist(rnegbin(n=10000,mu=10,theta=10),main="Theta=10",col="grey")
hist(rnegbin(n=10000,mu=10,theta=1),main="Theta=1",col="grey")
hist(rnegbin(n=10000,mu=10,theta=0.1),main="Theta=0.1",col="grey")
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Plotting the model produces a very similar result to that shown by the quasipoisson model.
glm3<-g0+geom_point()+geom_smooth(method="glm.nb", se=TRUE) +ggtitle("Negative binomial regression")
glm3
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12.5 Comparing the results

library(ggplot2)
g0<-ggplot(d,aes(x=grain,y=richness))
glm1<-g0+geom_point()+stat_smooth(method="glm",method.args=list( family="poisson"), se=TRUE)
glm3<-glm1+geom_point()+geom_smooth(method="glm.nb", se=TRUE,color="red")
glm3
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library(pscl)
modh<-hurdle(d$richness~grain,dist="negbin")
summary(modh)

##
## Call:
## hurdle(formula = d$richness ~ grain, dist = "negbin")
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -1.5804 -0.8495 -0.1085 0.6236 2.0657
##
## Count model coefficients (truncated negbin with log link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.915924 0.458802 8.535 < 2e-16 ***
## grain -0.008220 0.001724 -4.767 1.87e-06 ***
## Log(theta) 1.510256 0.510987 2.956 0.00312 **
## Zero hurdle model coefficients (binomial with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.34139 3.39460 2.163 0.0306 *
## grain -0.01531 0.01005 -1.524 0.1275
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Theta: count = 4.5279
## Number of iterations in BFGS optimization: 13
## Log-likelihood: -114.5 on 5 Df
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AIC(modh)

## [1] 238.9305
AIC(mod3)

## [1] 276.9441
confint(modh)

## 2.5 % 97.5 %
## count_(Intercept) 3.01668827 4.815159689
## count_grain -0.01159973 -0.004840422
## zero_(Intercept) 0.68811013 13.994679574
## zero_grain -0.03500187 0.004381010
modzi <- zeroinfl(data=d,richness~grain,dist="negbin")
summary(modzi)

##
## Call:
## zeroinfl(formula = richness ~ grain, data = d, dist = "negbin")
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -1.5740 -0.8408 -0.1085 0.6161 2.0427
##
## Count model coefficients (negbin with log link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.896314 0.446411 8.728 < 2e-16 ***
## grain -0.008132 0.001659 -4.902 9.49e-07 ***
## Log(theta) 1.514259 0.514694 2.942 0.00326 **
##
## Zero-inflation model coefficients (binomial with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.37854 11.19100 -0.481 0.631
## grain 0.00447 0.03878 0.115 0.908
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Theta = 4.5461
## Number of iterations in BFGS optimization: 35
## Log-likelihood: -114.6 on 5 Df
AIC(modh)

## [1] 238.9305
AIC(modzi)

## [1] 239.1852
AIC(mod3)

## [1] 276.9441
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12.6 Models with binomial errors

The most commonly used GL is probably logistic regression. In this particular model the response can only
take values of zero or one. Thus it is clear from the outset that errors cannot be normal. Let’s set up a simple
simulated data set to show how this works. Imagine we are interested in mortality of pine trees following
a ground fire. We might assume that the population of tree diameters are log normally distributed with a
mean of twenty.
set.seed(1)
diam<-sort(rlnorm(500,mean=log(20),sd=0.5))
summary(diam)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.445 14.660 19.636 23.018 28.079 134.407
hist(diam,col="grey",breaks=10)
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Let’s simulate some response data based on an extremely simple underlying pattern for tree mortality. We
might assume that trees with diameters of over 40 cm have bark that has reached a thickness that prevents
the tree being killed by the fire. We might also assume a simple linear relationship between diameter and
mortality up to this threshold and build a simple rule based vector of the probability that a tree survives
the fire as a function of its diameter.
p<-diam/50
p[p>1]<-1
plot(diam,p,ylab="Survival probability",xlab="Diameter",type="l",lwd=3)
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Although we have a very simple underlying deterministic model, we will not see this directly when we collect
data. Any individual tree will be either alive or dead. Thus our response will be zeros and ones. This is the
problem that logistic regression deals with very neatly without the need to calculate proportions explicitly.
f<-function(x)rbinom(1,1,x)
response<-as.vector(sapply(p,f))
head(response)

## [1] 0 0 0 1 0 0
d<-data.frame(diam,response)
plot(diam,response)
lines(diam,p,lwd=3)
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The task for the statistical model is to take this input and turn it back into a response model. Generalised
linear models do this using a link function. In R it is very easy to specify the model. We simply write a
model using the same syntax as for a linear model (one with gaussian errors) but we state the family of
models we wish to use as binomial.
mod1<-glm(response~diam,family="binomial")
summary(mod1)

##
## Call:
## glm(formula = response ~ diam, family = "binomial")
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.8202 -0.8891 -0.6053 1.0175 2.0428
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.60771 0.28033 -9.302 <2e-16 ***
## diam 0.10869 0.01217 8.929 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 688.91 on 499 degrees of freedom
## Residual deviance: 565.51 on 498 degrees of freedom
## AIC: 569.51
##
## Number of Fisher Scoring iterations: 5

We can see that R does find a model that matches the underlying pattern very well by using the model
for prediction. Again we visualise the model in order to understand it. This is always preferable to trying
to understand a model from a table of numbers. Visualisation is particularly important for models with
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parameters expressed on a logit scale as this is not intuitive.
g0 <- ggplot(d,aes(x=diam,y=response))
g1<-g0+geom_point()+stat_smooth(method="glm",method.args=list(family="binomial"))
g1
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If we wanted to check whether there was a response shape that differed from that assumed by the general
linear model we could try a general additive model with a smoother.
library(mgcv)
g1<-g0+geom_point()+stat_smooth(method="gam",method.args=list(family="binomial"),formula=y~s(x))
g1
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The curve is very similar. Note that as the smoother uses a form of “local” regression the confidence intervals
expand in areas where there is little data.

In some cases the response would take a different form. This could happen if there were some optimum
point at which some response occurred, for example the occurence of a species along an altitudinal gradient
or shoreline. In this case the gam model would fit the data better than the linear model. We will look at
how this can be tested formally later. A quick test is to calculate the AIC. If this is much lower for the gam
it indicates that the gam may be a better fit.
glm_mod<-glm(data=d, response~diam, family=binomial)
gam_mod<-gam(data=d, response~s(diam), family=binomial)

AIC(glm_mod)

## [1] 569.5078
AIC(gam_mod)

## [1] 566.4594

In this case it is very slightly lower, but not enough to suggest the use of a gam.

12.7 The logit link function

The logit link function used in binomial glms makes the slope of the line quite difficult to understand. In
most cases this doesn’t matter much, as you can concentrate on the sign and signficance of the parameter
and show the line as a figure. However when analysing differences in response as a function of levels of a
factor you do need to understand the logit link.



224 CHAPTER 12. GENERALISED LINEAR MODELS

To illustrate let’s take a very simple example. Ten leaves are classified as being taken from shade or sun and
classified for presence of rust.
library(purrr)
set.seed(1)
light<-rep(c("shade","sun"),each=10)
presence<-1*c(rbernoulli(10,p=0.5),rbernoulli(10,p=0.1))
d<-data.frame(light,presence)

We can get a table of the results easily.
table(d)

## presence
## light 0 1
## shade 4 6
## sun 9 1

So 6 of the leaves in the shade had rust present and 4 did not. The odds of rust are therefore 6 to 4. Odds
are used in the logit transform rather than simple proportions because odds can take values between 0 and
infinity, while proportions are bounded to lie between zero and one. Taking the logarithm of the odds leads
to an additive model.

There are two factor levels, shade and sun. The default reference when a model is fitted will be the factor
that is first in alphabetical order, i.e. shade. So after fitting a model the intercept will be the log of the odds
in the shade. The effect of light will be the log odds in the sun minus the log odds in the shade.
odds_shade<-6/4
odds_sun<-1/9
log(odds_shade)

## [1] 0.4054651
log(odds_sun)-log(odds_shade)

## [1] -2.60269

We can see that this coincides with the model output.
mod<-glm(data=d,presence~light,family="binomial")
summary(mod)

##
## Call:
## glm(formula = presence ~ light, family = "binomial", data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.354 -0.459 -0.459 1.011 2.146
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.4055 0.6455 0.628 0.5299
## lightsun -2.6027 1.2360 -2.106 0.0352 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
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## Null deviance: 25.898 on 19 degrees of freedom
## Residual deviance: 19.962 on 18 degrees of freedom
## AIC: 23.962
##
## Number of Fisher Scoring iterations: 4

If the coeficients are exponentiated then the first coeficient represents the baseline odds and the second
coeficient represesnts this value divided by the odds for the “treatment”. As binomial models are often used
in epidemiology this explains why we could hear statements such as “eating processed meat increases the
odds of contracting bowel cancer by a factor of 2”. This is a literal interpretation of the exponentiated
coeficient.
exp(coef(mod))

## (Intercept) lightsun
## 1.50000000 0.07407408
odds_shade

## [1] 1.5
odds_sun/odds_shade

## [1] 0.07407407

To convert the odds into proportions divide the odds by 1 plus the odds.
odds_shade/(1+odds_shade)

## [1] 0.6
odds_sun/(1+odds_sun)

## [1] 0.1

So this gives the proportions as estimated by the model.
exp(coef(mod)[1])/(1+exp(coef(mod)[1]))

## (Intercept)
## 0.6
exp(coef(mod)[1] + coef(mod)[2])/(1+exp(coef(mod)[1] + coef(mod)[2]))

## (Intercept)
## 0.1

12.8 Exercises

1. GLMS can also be used when the explanatory variable is a factor. Here is a very simple data set
that consists of counts of ragworm in two types of substrate, classified simply into mud and sand.
Analyse the data using both a general linear model and a generalised linear model. Comment on
the differences between the two aproaches.

d<-read.csv("/home/aqm/course/data/HedisteCounts.csv")

2. Binomial (prensence/absence) model

In some cases the actual numbers of organisms counted can be a poor choice of response variable. If organisms
are highly aggregated then presence vs absence is a better choice. Reanalyse the ragworm data, this time
using presence as the response.
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d$pres<-1*(d$Count>0) ## This sets up a variable consisting of ones and zeros

3. Leafminers and leaf exposure to light

The number of leaf miners were counted on 200 leaves exposed to different levels of ambient light, measured
as a percentage of full exposure.

Analyse these data using an appropriate GLM.
d<-read.csv("/home/aqm/course/data/leafminers.csv")

plot(d)
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library(plotly)
g0<-ggplot(d,aes(x=light,y=nminers))
glm1<-g0+geom_point()+stat_smooth(method="glm",method.args=list( family="poisson"), se=TRUE) +ggtitle("Poisson regression with log link function")
ggplotly(glm1)
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mod<-glm(data=d,nminers~light,family="poisson")
summary(mod)

##
## Call:
## glm(formula = nminers ~ light, family = "poisson", data = d)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.0888 -1.7275 -1.1676 0.0864 5.9691
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.36721 1.09865 -4.885 1.03e-06 ***
## light 0.06610 0.01203 5.496 3.88e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 751.31 on 199 degrees of freedom
## Residual deviance: 720.43 on 198 degrees of freedom
## AIC: 1025.3
##
## Number of Fisher Scoring iterations: 6
log(2)/coef(mod)[2]

## light
## 10.48647
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Chapter 13

Modelling with multiple variables

13.1 Introduction

When looking at simple regression models we have used a single numerical variable to explain and/or predict
the variability in a second variable. Analysis of co-variance, uses one numerical variable and a factor. What
if we have two or more numerical variables that could explain and/or predict some variable that we are
interested in. Can we build models from them?

From a mathematical perspective using more variables in the model is straightforward. However as we have
seen, the complex nature of ecological data has to be considered carefully.

Multiple regression implies all the same assumptions as regression. Simple intepretation of multiple regression
models also relies on an aditional assumption. That is that the explanatory variables do not display a high
degree of multiple co-linearity. In other words they should not be correlated with each other. This is rarely
the case in ecology. Multiple co-linearity does not prevent the use of such models, but it does raise some
very tricky issues.

13.2 Example data

The effect of fragmentation of habitat as a result of human activities is a common theme in ecology. We will
look at an example presented by Zuur et al (2010). Forest bird abundances expressed as an index (details of
how this was measured are not given) were observed in 56 forest patches in south-eastern Victoria, Australia.
The aim of the study was to relate the index of forest bird abundance to six habitat variables; size of the
forest patch, distance to the nearest patch, distance to the nearest larger patch, mean altitude of the patch,
year of isolation by clearing, and an index of stock grazing history (1 = light, 5 = intensive).

Zuur’s analysis is given in the appendix of the book. In our analysis the grazing index will be treated as a
numerical variable on an ordinal scale. Zuur treats it as a factor. This does not alter the main conclusions
of the analysis, and helps to clarify and illustrate some addional issues.
d<-read.csv("https://tinyurl.com/aqm-data/loyn.csv")

13.3 Muliple regression

The three steps in building a regression model with many explanatory variables are.

229
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1. Look at the distributions of the explanatory and response variables with particular attention to influ-
ential outliers.

2. Look for collinearity of the explanatory variables.

3. Investigate the relationship between the response variable and the explanatory variables

13.3.1 Analysis of the distribution of variability

The first step in any analysis involving regression is to investigate the distribution of each variable and look
for potential issues with influential outliers. Rembember that the assumption of normality in regression
aplies to the residuals, not the explanatory variables themselves. Equally spaced observations (i.e. forming
a flat, uniform distribution) would be ideal. We more or less have this for grazing, although the range is
slightly limited and the measurements will have error due to the subjective judgment of grazing intensity.
A symetrical,more or less normal distribution would also be suitable. However highly skewed distributions
cause serious problems.

Let’s first look at the histograms.
par(mfcol=c(2,3))
hist(d$ABUND)
hist(d$AREA)
hist(d$DIST)
hist(d$LDIST)
hist(d$YR.ISOL)
hist(d$ALT)
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There are issues with both the measures of distance and area. However in this case the outliers are not the
result of errors. A few forest patches are much larger than the rest. This type of pattern is very common.
We do not usually want to remove these sort of outliers, as they are part of the phenomenon that we are
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studying. However if a single observation falls in the tail for several of the variables at once it will have very
high leverage and potentially exert a great deal of influence over the result.

Another way of looking for patterns in the outliers is to form Cleveland dotplots. These are very simple
diagnostic tools. The value of the observation is simply plotted against the order of the data. This can help
to show points that fall far from the rest of the values for several variables.
par(mfrow = c(3, 2), mar = c(3, 3, 3, 1))
dotchart(d$ABUND, main = "ABUND")
dotchart(d$AREA, main = "AREA")
dotchart(d$DIST, main = "DIST")
dotchart(d$LDIST, main = "LDIST")
dotchart(d$YR.ISOL, main = "YR.ISOL")
dotchart(d$ALT, main = "ALT")
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We can see that there are two observations with high AREA values, one observation with a high DIST value,
and a couple of observations with high LDIST values. These are all different forest patches. If the same
patch had much larger values of all variables, then it probably should be dropped from the analysis, as it
could exert too much influence on the results. At the very least the analysis should be conducted twice, once
with the oulier included and then with the outler removed.

13.3.2 Transformation

The alternative to dropping outliers is to apply a transformation. This is aimed at “pulling in”” the tail of
the distribution in order to give the variables better statistical properties for modelling. We will try a log
transformation and look at the results.
par(mfcol=c(3,2))
d$LogDist<-log10(d$DIST)
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d$LogArea<-log10(d$AREA)
d$LogLDist<-log10(d$LDIST)
hist(d$LogDist)
hist(d$LogArea)
hist(d$LogLDist)
dotchart(d$LogDist,main="Log Dist")
dotchart(d$LogArea,main="Log Area")
dotchart(d$LogLDist,main="Log LDist")
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The transformations seem to have effectively neutralised the outliers, so we can proceed to the next step
using all the data.

13.4 Collinearity

To assess collinearity, we will use three tools: Pairwise scatterplots, correlation coefficients, and variance
inflation factors (VIF). The first two can be combined in one graph with some R code that is modified from
the pairs help file. The modified function can be loaded as a script from the course site.
source("https://tinyurl.com/aqm-data/QEScript")

We first select the variables that we are interested in. You may want to look at the data frame again with
str to check the order. We can quickly subset the data to only include the 2nd and the 6th to 11th columns
using the command below.
d1<-d[,c(2,6:11)]
str(d1)

## 'data.frame': 56 obs. of 7 variables:
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## $ ABUND : num 5.3 2 1.5 17.1 13.8 14.1 3.8 2.2 3.3 3 ...
## $ YR.ISOL : int 1968 1920 1900 1966 1918 1965 1955 1920 1965 1900 ...
## $ GRAZE : int 2 5 5 3 5 3 5 5 4 5 ...
## $ ALT : int 160 60 140 160 140 130 90 60 130 130 ...
## $ LogDist : num 1.59 2.37 2.02 1.82 2.39 ...
## $ LogArea : num -1 -0.301 -0.301 0 0 ...
## $ LogLDist: num 1.59 2.37 2.49 1.82 2.39 ...

Now the function we have loaded produces a scatterplot of each variable against each of the rest, and shows
the correlation coefficient in a font that is proportional to its size.
Xpairs(d1)
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So there is a strong correlation between abundance, grazing and the logarithm of area. There is a weaker
correlation with the year of isolation. These are the relationships we are interested in. However there are
also correlations between the logarithm of the distance to the nearest patch and the logarithm of the distance
to the nearest large patch. This is not suprising if the nearest patch is also a large patch. We will only need
to worry about this if either of the terms are included in a model.

Grazing is also correlated with year of isolation and log area. The problem with these correlations is that
they potentially confound the interpretation. The degree of confounding depends on the strengthof the
correlation. If, for example, all the fragments that are heavily grazed were also small it would be very hard
to clearly attribute low abundance to grazing or to area.

You can look at the significance of the correlations using the function cor.prob that was also included in
the script loaded above. This places the correlation coeficient below the diagonal in the matrix and its
significance above. In this particular data set correlation coeficients of above 0.3 (log Area with Altitude)
are significant.
round(cor.prob(d1),2)

## ABUND YR.ISOL GRAZE ALT LogDist LogArea LogLDist
## ABUND 1.00 0.00 0.00 0.00 0.35 0.00 0.39
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## YR.ISOL 0.50 1.00 0.00 0.08 0.89 0.04 0.24
## GRAZE -0.68 -0.64 1.00 0.00 0.29 0.00 0.80
## ALT 0.39 0.23 -0.41 1.00 0.10 0.04 0.04
## LogDist 0.13 -0.02 -0.14 -0.22 1.00 0.02 0.00
## LogArea 0.74 0.28 -0.56 0.28 0.30 1.00 0.00
## LogLDist 0.12 -0.16 -0.03 -0.27 0.60 0.38 1.00

We will look at the variance inflation factor after fitting some models.

13.5 Model selection

One of the most interesting uses of multiple regression is to establish how many variables might be involved
in determining the response. Every time we use regression with observational data such as these we need
to remember that correlation is not causation. We cannot unequivocally attribute a cause to the effect.
However we can analyse the strength of the association and interpret this carefully. In order to achieve this
we need to be aware of some of the pitfalls that arise as a result of multiple colinearity. Let’s first look at
the grazing and area effects.

We can fit an additive model simply by typing the names of the terms. We can then test their significance
using anova.
lm.mod1<-lm(ABUND~GRAZE+LogArea,data=d1)
anova(lm.mod1)

## Analysis of Variance Table
##
## Response: ABUND
## Df Sum Sq Mean Sq F value Pr(>F)
## GRAZE 1 2952.3 2952.35 71.094 2.301e-11 ***
## LogArea 1 1184.6 1184.64 28.527 1.977e-06 ***
## Residuals 53 2200.9 41.53
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Grazing and LogArea are quite closely correlated. So we have a problem. If we type the model formula in a
different order we get different p-values for the terms!
lm.mod2<-lm(ABUND~LogArea+GRAZE,data=d1)
anova(lm.mod2)

## Analysis of Variance Table
##
## Response: ABUND
## Df Sum Sq Mean Sq F value Pr(>F)
## LogArea 1 3471.0 3471.0 83.583 1.757e-12 ***
## GRAZE 1 666.0 666.0 16.038 0.0001946 ***
## Residuals 53 2200.9 41.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Both terms are still significant, but the result is quite different.

Why is this?

Let’s break down the analysis in steps. First let’s look at the relationship with grazing alone.
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plot(ABUND~GRAZE,data=d1)
lm.mod.g<-lm(ABUND~GRAZE,data=d1)
anova(lm.mod.g)

## Analysis of Variance Table
##
## Response: ABUND
## Df Sum Sq Mean Sq F value Pr(>F)
## GRAZE 1 2952.3 2952.3 47.09 6.897e-09 ***
## Residuals 54 3385.6 62.7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
abline(lm.mod.g)
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Now, imagine that we first looked at the strongest relationship that was apparent from the pairs plot. This
is the relationship with log area. We could fit a simple regression model.
plot(ABUND~LogArea,data=d1)
lm.mod.a<-lm(ABUND~LogArea,data=d1)
anova(lm.mod.a)

## Analysis of Variance Table
##
## Response: ABUND
## Df Sum Sq Mean Sq F value Pr(>F)
## LogArea 1 3471.0 3471.0 65.377 7.178e-11 ***
## Residuals 54 2866.9 53.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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abline(lm.mod.a)
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The residuals from the regression is the variability that is not explained by area. We could then take this
unexplained variability and see if any of this could still be explained by grazing. This would involve fitting
a second model.
plot(residuals(lm.mod.a)~GRAZE,data=d1)
lm.mod.g2<-lm(residuals(lm.mod.a)~GRAZE,data=d1)
abline(lm.mod.g2)
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anova(lm.mod.g2)

## Analysis of Variance Table
##
## Response: residuals(lm.mod.a)
## Df Sum Sq Mean Sq F value Pr(>F)
## GRAZE 1 457.82 457.82 10.262 0.002279 **
## Residuals 54 2409.12 44.61
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The significance of grazing is greatly reduced after we have taken into account the effect of area. The first
variable “soaks up”” a lot of the variablity that is also correlated with grazing. So less of the variability
in the residuals can be explained by grazing. So, the order in which we analyse the variables is important.
Although the sum of squares and the p-values are slightly different when we fit both terms together using
the model formula for multiple regression, the general effect is the same. This does not occur if the variables
are completely uncorrelated (orthogonal). Hence there is a need to look at the data very carefully whenever
you build a multiple regression model.

13.5.1 Dropping terms

In the simple case of two explanatory variables we can get around the problem by dropping each of the terms
in turn, refitting the model and looking at the difference. The results for mod1 (grazing first) and mod2 (log
area first) are now identical.
drop1(lm.mod1,test="F")

## Single term deletions
##
## Model:
## ABUND ~ GRAZE + LogArea
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 2200.9 211.59
## GRAZE 1 666.0 2866.9 224.40 16.038 0.0001946 ***
## LogArea 1 1184.6 3385.6 233.71 28.527 1.977e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
drop1(lm.mod2,test="F")

## Single term deletions
##
## Model:
## ABUND ~ LogArea + GRAZE
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 2200.9 211.59
## LogArea 1 1184.6 3385.6 233.71 28.527 1.977e-06 ***
## GRAZE 1 666.0 2866.9 224.40 16.038 0.0001946 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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13.5.2 Stepwise model selection

The question underlying the analysis is to find out which of the set of explanatory variables are most closely
associated with bird abundance. In one sense we already have an answer from the pairs plot. Some of the
variables are clearly associated with abundance when used in a model on their own. But we want to explain
as much of the variability as possible. How many terms are useful?

One way of addressing this is to fit a model with all the terms and then drop each in turn to check for
significance.
lm.mod.full<-lm(ABUND~.,data=d1)
drop1(lm.mod.full,test="F")

## Single term deletions
##
## Model:
## ABUND ~ YR.ISOL + GRAZE + ALT + LogDist + LogArea + LogLDist
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 1996.8 214.14
## YR.ISOL 1 108.83 2105.7 215.11 2.6705 0.10864
## GRAZE 1 131.07 2127.9 215.70 3.2163 0.07908 .
## ALT 1 27.02 2023.9 212.90 0.6630 0.41945
## LogDist 1 4.68 2001.5 212.27 0.1149 0.73609
## LogArea 1 1059.75 3056.6 235.98 26.0049 5.494e-06 ***
## LogLDist 1 3.80 2000.7 212.25 0.0933 0.76130
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

However, again there is a problem with this if there is any collinearity. This initial analysis suggests that
we can drop any one of the variables from the model with the exception of log Area without significantly
reducing the amount of variance explained. However the problem is that if we dropped more variables from
the model some of these variables would become significant again as they picked up variability that was
explained by the lost variables.

13.5.3 The variance inflation factor

The variables that are more closely correlated with all the rest are those that are likely to have the least
significance when dropped from the full model. We can rank the variables according to their colinearity with
the rest by calculating the variance inflation factor.
library(car)
sort(vif(lm.mod.full))

## ALT LogDist YR.ISOL LogArea LogLDist GRAZE
## 1.467937 1.654553 1.804769 1.911514 2.009749 2.524814

The variance inflation factor is quite a simple measure to understand. If we remove abundance from the
data frame we are left only with the explanatory variables.
expl<-d1[,-1]

If we fit a model using all these variables in order to explain the variability in any one of the other explanatory
variables we can get a value for R2. If the variable is closely correlated with all the rest this will be large. If
we subtract this from one we get the ammount of variability not explained. The vif is simply the reciprocal
of this.

For example for grazing.
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vif.mod<-lm(GRAZE~.,data=expl)
Rsq<-summary(vif.mod)$r.squared
Rsq

## [1] 0.6039312
vif<-1/(1-Rsq)
vif

## [1] 2.524814

High values of vif are problematical, but there is no concensus of what is a high value. Zuur (2007) states
that some statisticians suggest that values higher than 5 or 10 are too high (Montgomery and Peck 1992). In
this case none of the vif values are that large, but the problem of lack of explanatory power in the presence
of other variables is still apparent. Therefore a good approach is to rank the vif values as we have done
here and think about the problem in context. Variables that do not explain much of the variability in the
response variable are not going to be important whatever their vif. However a variable with a high vif value
could explain a lot of the variability when used on its own in a model, but very little in combination with
others. Grazing seems to be this sort of variable. The point here is that from an ecological perspective we
would suspect that high grazing values should have an effect on bird density by altering habitat. So we
would not want to drop the term from the model as a result of artefacts arising as a result of collinearity.

An alternative to using p-values for model selection is the use of AIC. AIC is quite conservative, in other
words it tends to allow models to retain more parameters than some other methods for model selection.

We can use AIC for backward model selection using the step function in R. Backwards model selection using
AIC is based on the same principle as the drop1 function, but terms are retained if they reduce AIC by more
than 2 points. The process is repeated until dropping any further terms does not reduce AIC by more than
2 points.
lm.mod.step<-step(lm.mod.full,test="F")

## Start: AIC=214.14
## ABUND ~ YR.ISOL + GRAZE + ALT + LogDist + LogArea + LogLDist
##
## Df Sum of Sq RSS AIC F value Pr(>F)
## - LogLDist 1 3.80 2000.7 212.25 0.0933 0.76130
## - LogDist 1 4.68 2001.5 212.27 0.1149 0.73609
## - ALT 1 27.02 2023.9 212.90 0.6630 0.41945
## <none> 1996.8 214.14
## - YR.ISOL 1 108.83 2105.7 215.11 2.6705 0.10864
## - GRAZE 1 131.07 2127.9 215.70 3.2163 0.07908 .
## - LogArea 1 1059.75 3056.6 235.98 26.0049 5.494e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Step: AIC=212.25
## ABUND ~ YR.ISOL + GRAZE + ALT + LogDist + LogArea
##
## Df Sum of Sq RSS AIC F value Pr(>F)
## - LogDist 1 12.64 2013.3 210.60 0.3159 0.57661
## - ALT 1 35.12 2035.8 211.22 0.8778 0.35331
## <none> 2000.7 212.25
## - YR.ISOL 1 121.64 2122.3 213.55 3.0399 0.08739 .
## - GRAZE 1 132.44 2133.1 213.84 3.3098 0.07486 .
## - LogArea 1 1193.04 3193.7 236.44 29.8161 1.489e-06 ***
## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Step: AIC=210.6
## ABUND ~ YR.ISOL + GRAZE + ALT + LogArea
##
## Df Sum of Sq RSS AIC F value Pr(>F)
## - ALT 1 57.84 2071.1 210.19 1.4653 0.23167
## <none> 2013.3 210.60
## - GRAZE 1 123.48 2136.8 211.94 3.1280 0.08294 .
## - YR.ISOL 1 134.89 2148.2 212.23 3.4169 0.07033 .
## - LogArea 1 1227.11 3240.4 235.25 31.0846 9.412e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Step: AIC=210.19
## ABUND ~ YR.ISOL + GRAZE + LogArea
##
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 2071.1 210.19
## - YR.ISOL 1 129.81 2200.9 211.59 3.2590 0.07682 .
## - GRAZE 1 188.45 2259.6 213.06 4.7315 0.03418 *
## - LogArea 1 1262.97 3334.1 234.85 31.7094 7.316e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(lm.mod.step)

##
## Call:
## lm(formula = ABUND ~ YR.ISOL + GRAZE + LogArea, data = d1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.5159 -3.8136 0.2027 3.1271 14.5542
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -134.26065 86.39085 -1.554 0.1262
## YR.ISOL 0.07835 0.04340 1.805 0.0768 .
## GRAZE -1.90216 0.87447 -2.175 0.0342 *
## LogArea 7.16617 1.27260 5.631 7.32e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.311 on 52 degrees of freedom
## Multiple R-squared: 0.6732, Adjusted R-squared: 0.6544
## F-statistic: 35.71 on 3 and 52 DF, p-value: 1.135e-12

Notice how grazing became significant once more once altitude was dropped. This is probably because
fragments that are more heavily grazed are in the valleys. We do have a useful model. But we need to be
careful in the intepretation of the intercept. Because we used year of isolation in the model the intercept
refers to the value at year zero, altitude zero, grazing zero and log area zero. This is not really helpful.
However the slopes are interpretable. They represent the expected change in bird density for each unit
change in the variables, when holding all other variables constant. We should report these values along with
their confidence intervals, or standard errors.
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confint(lm.mod.step)

## 2.5 % 97.5 %
## (Intercept) -3.076166e+02 39.0952733
## YR.ISOL -8.739958e-03 0.1654462
## GRAZE -3.656915e+00 -0.1473963
## LogArea 4.612500e+00 9.7198311

Notice that although the stepwise procedure based on AIC retained year of isolation in the model, the
confidence interval includes zero and we cannot be sure if the effect is positive or negative at the 95% level.
This is another way of looking at statistical significance. This term is not significant at the usual 0.05 cutoff.
You might consider dropping it from the model. More on this later.

13.5.4 Diagnostics

Once the model has been decided on the usual diagnostics should be conducted.
par(mfcol=c(2,2))
plot(lm.mod.step)
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The plots suggest that the main assumptions are not seriously violated. However you should be aware that
spatial data such as these could lack independence due to autocorrelation. In order to analyse this we would
need the coordinates, which are not provided in this data set.

13.6 Generalised Additive Models

In a previous class we looked at how flexible models can be fitted todata in order to capture more complex
responses that are not well modelled by regression. General additive models can be used in a very similar
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way to multiple regression. They will show up any non linear response when plotted.

13.6.1 Fitting a gam with multiple variables

library(mgcv)
gam.mod1<-gam(ABUND~s(GRAZE,k=4)+s(LogArea)+s(YR.ISOL),data=d1)
summary(gam.mod1)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## ABUND ~ s(GRAZE, k = 4) + s(LogArea) + s(YR.ISOL)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.5143 0.7369 26.48 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(GRAZE) 2.682 2.909 6.078 0.00141 **
## s(LogArea) 2.760 3.479 11.485 3.12e-06 ***
## s(YR.ISOL) 2.900 3.542 0.842 0.55123
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.736 Deviance explained = 77.6%
## GCV = 36.499 Scale est. = 30.41 n = 56

Note that in the case of grazing it was necessary to set the number of knots to four. This is because the
default in mgcv is to begin with 10 and reduce the complexity through crossvalidation. We can’t have 10
knots for grazing as there are only 5 values.
par(mfcol=c(2,2))
plot(gam.mod1)
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13.6.2 Quick model selection for Gams

The cross validation algorithm used when fitting gams does not allow stepwise term deletion to be carried
out. One quick method of model selection is to add “select=T”” when fitting a model with all the terms.
This allows the smoother to reduce to having no knots, which effectively eliminates a term from the model.
gam.mod.sel<-gam(ABUND~s(YR.ISOL)+s(GRAZE,k=4)+s(ALT)+s(LogDist)+s(LogArea)+s(LogLDist),select=T,data=d1)
anova(gam.mod.sel)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## ABUND ~ s(YR.ISOL) + s(GRAZE, k = 4) + s(ALT) + s(LogDist) +
## s(LogArea) + s(LogLDist)
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(YR.ISOL) 1.104e-11 9.000e+00 0.000 0.710
## s(GRAZE) 2.181e+00 3.000e+00 8.207 1.36e-05
## s(ALT) 6.048e-01 3.000e+00 0.492 0.118
## s(LogDist) 4.183e-11 9.000e+00 0.000 1.000
## s(LogArea) 2.247e+00 8.000e+00 5.729 2.63e-09
## s(LogLDist) 8.506e-12 9.000e+00 0.000 0.962
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13.6.3 Akaike weighting, relative strength of evidence approach.

As mentioned previously, in recent years information criteria (AIC) based approaches have become increas-
ingly used for model selection by ecologists. This has been largely due to a string of influential papers
by Burnham and Anderson. AIC is used in the automated stepwise procedure that we have seen already.
However the popularity of the Burnham and Anderson model comparison approach arises as a result of
the underlying philosophy. Burnham and Anderson do not like stepwise procedures, which are carried out
without thought. They insist that simply letting the computer decide on a best model is a poor strategy.
The alternative is to suggest a small subset of candidate models that make sense within the context of the
study. AIC is then used to evaluate the strength of the evidence provided by the data for each model.

AIC stands for “Akaike’s Information Criteria”. To simplify a long story AIC is based on the concept of
penalised likelihood. The (-2log) likelihood is a measure of the fit of the model, as is R2, and the penalty
paid is 2 points for each parameter used in the model. All other things being equal models with lower AIC
scores are better than those with high AIC scores, and a difference of 2 points in the (-2log) likelihood is
worth paying for one parameter.

To use AIC in model selection using the protocol laid out by Burnham and Anderson there are a number of
things to keep in mind.

• All the models in the set of candidates must use exactly the same set of observations and therefore be
based on the same sample size n.

• All the models must use exactly the same response variable. For example do not compare one model
using abundance with another using log(abundance)

• Models must use the same methods to calculate likelihoods. This is a technical issue, but in cases
where normally distributed errors are asumed this can be taken as true.

13.6.4 The method.

• Choose a subset of models which can be justified as good candidates for the best model on both
statistical and biological grounds.

• Calculate AIC for all models. Burnham and Anderson suggest using an adjusted value called AICc if
AIC is small. In fact this could be used for all analyses.

• Identify the model with the smallest AIC. Denote its AIC as AICmin. This is the best model. We
could stop at this point but there is more information to extract from the models.

• Calculate the AIC differences, for each model.∆i = AICi − AICmin

• Compute the relative likelihood for each model. RLi = exp(−0.5∆i)
• Compute Akaike weights for each model. These are the normalized relative likelihoods. wi = RLi∑

RL
.

The Akaike weights can be interpreted as probabilities that the given model is the best model.If we
were to go back and obtain more data from the population and refit the same models again, then the
Akaike weight gives the probability that a given model would be judged the best model on repeated
sampling.

The package MuMIn in R will do steps 2 to 6 for us.
library(MuMIn)
gam.mod1<-gam(ABUND~s(GRAZE,k=4)+s(LogArea),data=d1)
gam.mod2<-gam(ABUND~s(GRAZE,k=4)+s(LogArea)+s(YR.ISOL),data=d1)
gam.mod3<-gam(ABUND~s(GRAZE,k=4)+s(LogArea)+s(ALT),data=d1)
gam.mod4<-gam(ABUND~s(YR.ISOL)+s(GRAZE,k=4)+s(ALT)+s(LogDist)+s(LogArea)+s(LogLDist),data=d1)
model.sel(gam.mod1,gam.mod2,gam.mod3,gam.mod4)

## Model selection table
## (Int) s(GRA,4) s(LgA) s(YR.ISO) s(ALT) s(LgD) s(LLD) df logLik
## gam.mod1 19.51 + + 6 -173.231
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## gam.mod3 19.51 + + + 8 -171.390
## gam.mod2 19.51 + + + 10 -169.964
## gam.mod4 19.51 + + + + + + 13 -167.720
## AICc delta weight
## gam.mod1 361.9 0.00 0.510
## gam.mod3 362.3 0.40 0.417
## gam.mod2 365.9 3.95 0.071
## gam.mod4 372.9 10.98 0.002
## Models ranked by AICc(x)

So, if we take this information theoretic approach the gam model which includes only grazing and log area
has a 51% probabliity of being the best within the set of models we proposed, while the model with an
additional term for altitude has a 42% probability.

We can also compare GAM’s with linear models, as the likelihoods are calculated in the same way.
model.sel(gam.mod1,lm.mod.step)

## Model selection table
## (Int) s(GRA,4) s(LgA) GRA LgA YR.ISO class df logLik
## gam.mod1 19.51 + + gam 6 -173.231
## lm.mod.step -134.30 -1.902 7.166 0.07835 lm 5 -180.555
## AICc delta weight
## gam.mod1 361.9 0.0 0.995
## lm.mod.step 372.3 10.4 0.005
## Models ranked by AICc(x)

The GAM wins easily. This is as a result of the GAM finding the correct form for the grazing response
rather than assuming a straight line.

13.7 Tree models

One of the problems with multiple regression and generalised additive models is that possible interactions
between variables are not included. Zuur et al suggest that grazing could be included as a categorical factor,
which allows some interactive effects to be looked at by taking a similar approach to the one we used for
analysis of covariance. However interactions between two numerical variables cannot be easily captured.
One easy way around this is to use tree models. The idea behind a tree model is to find a series of binary
splitting rules that divide the response data into the most homogeneous subsets. The easiest way to follow
this is with an example.

13.7.1 Fitting and plotting a tree model

library(rpart)
tree.mod<-rpart(ABUND~.,data=d1)
par(xpd=T)
plot(tree.mod)
text(tree.mod,use.n=T,digits=3)
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LogArea< 1.145

YR.ISOL>=1964

6.29
n=13

15.1
n=13

22.1
n=11

30.1
n=19

This has a direct interpretation. We read the tree as a set of rules. If a rule is true we take the left hand
branch, if it is false the right hand branch. The first split is based on the variable that can explain most
of the deviance when used in this way. This is grazing. So if grazing is >=4.5 i.e. takes values of 5 on the
ordinal scale we do not need to consider any other variables. The mean abundance levels for these sites is
6.3 based on 13 observations. If grazing pressure is low, some more explanatory variables are important.
Large fragments with an area over log10(1.145)= 14 hectares have a mean abundance of 30.1. The final
split for smaller fragments is less easy to explain. Fragments isolated after 1964 have a slightly lower mean
abundance than those isolated earlier. However R starts off using an arbitrary degree of complexity. Maybe
this tree has overfit to the data? We can test this by seeing if the tree can be pruned.

13.7.2 Pruning the tree

The theory behind tree models is presented in Zuur and Crawley. The most difficult element to understand
is how to select an optimum tree based on the complexity parameter. The method has some similarity to
the use of AIC for model selection. It is based on penalised likelihood (measured as the deviance). We want
a tree that fits the data as well as possible, but uses as few parameters (splits) as possible. The default
stopping rule that produced the first tree we looked at may have gone too far. We can get an R squared
value (variability, or deviance explained) for each split along with the relative error calculated directly or
as a result of cross validation. Relative error is 1-R squared. Cross validation produces confidence intervals
for this error. We do not need to go into any more gory details regarding how cross validation is run, apart
from mentioning that the cross validation error will always be higher than the apparent error as it is based
on simulations using part of the data to fit a model and the rest to validate it.
par(mfcol=c(2,2))
rsq.rpart(tree.mod)

##
## Regression tree:
## rpart(formula = ABUND ~ ., data = d1)
##
## Variables actually used in tree construction:
## [1] GRAZE LogArea YR.ISOL
##
## Root node error: 6337.9/56 = 113.18
##
## n= 56
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##
## CP nsplit rel error xerror xstd
## 1 0.466991 0 1.00000 1.06900 0.137732
## 2 0.232025 1 0.53301 0.87130 0.134078
## 3 0.044967 2 0.30098 0.52570 0.103799
## 4 0.010000 3 0.25602 0.48218 0.096976
plotcp(tree.mod)
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It should be apparent from the figures that adding a third split does not result in much gain in variance
explained (R squared) or much reduction in relative error. So we can prune the tree using a complexity
parameter of 0.1 (see the third figure above). We can also get a nicer figure using the partykit library.
tree.mod<-prune(tree.mod,cp=0.1)
library(partykit)
plot(as.party(tree.mod), digits=3)
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We can also look at confidence intervals for the node values. These should not overlap if the splits are
significant.
library(gplots)
plotmeans(d$ABUND~round(predict(tree.mod),1),connect=F)
grid()
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So, the analysis leads to similar conclusions regarding the importance of the variables as multiple regresion.
Date of isolation does not seem to be worth keeping in the model. While conservative fitting procedures may



13.7. TREE MODELS 249

retain this term, the effect is not strong enough to be considered important. It is also ambiguous and hard
to interpret in a meaningful way.

A point to be aware of is that the deviance is calculated using the sum of squares. Outliers and points
with high leverage can still influence the results of the analysis. Homogeneity of variance is not assumed,
as variance explained is calculated for each split separately. However it is a good idea to carry out some
basic diagnistics in order to identify problematic observations that are not well predicted by the model and
to check that the residuals are at least approximately normally distributed.
par(mfcol=c(2,2))
plot(residuals(tree.mod)~predict(tree.mod))
boxplot(residuals(tree.mod)~round(predict(tree.mod),1))
hist(residuals(tree.mod))
qqnorm(residuals(tree.mod))
qqline(residuals(tree.mod))
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The R squared of the tree model is 1-0.3= 0.7. This is comparable to the value we got using GAM and it
is higher than the value for conventional multiple regression. The GAM and tree models show clearly that
the effect of grazing is only important at the highest level of the index. The tree model also points out a
possible interaction. At high levels of grazing there seems to be no further effect of area on abundance. This
may be because high levels of grazing have altered the forest habitat so much that it is no longer suitable
for many types of forest bird.

Tree models are particularly useful for quickly establishing which variables are most important in large data
sets. Sometimes only a single split is found. If the same variable is used to split the data repeatedly the tree
is effectively carrying out a regression on that variable, but with a series of steps instead of a smooth line.
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13.8 Which technique to use?

The three techniques led to more or less the same conclusion regarding the relative importance of the
explanatory variables. The only slight point of contention was whether altitude or year since isolation could
have some effect. The GAM model and the tree model point out that the effect of grazing is only important
at the highest level. This might also have been identified if we had used grazing as a factor in a linear model,
which we did not try here. You may want to read Zuur et als analysis of these data.

Each of the modelling techniques have their own strengths and weaknesses.

• Multiple regression is a classic methodology that is understood by most researchers. It is simple to
report the results in a conventional style (see this paper by the researcher who collected the data we have
just analysed for an example). Many relationships are approximated by a straight line, so regression
coefficients form a useful summary of effects. Using linear regression forces you to investigate the
nature of the data thoroughly in order to ensure that the assumptions of the technique are not severely
violated. With care, data sets with a high degree of multiple colinearity can be analysed, providing
the consequences of colinearity are recognised when selecting the model. However the technique can
lead to curvilinear responses being missed, along with interactions.

• Generalised additive models have become very popular in the ecological literature over the last few
years. They allow complex responses to be identified. The relative importance of each explanatory
variable can be assessed using GAMS just as in multiple regression. Linear regression can fail to
spot curvilinear responses which can sometimes lead to misspecified models that do not capture an
important element in the data. However GAM models are difficult to communicate to others. They
can only really be plotted. So unless the data and the fitted model are provided they cannot be used
for predicting new cases after the report has been written up.

• Tree models are simple to interpret, make relatively few assumptions and can show up interactions.
Providing trees are not too complex the results can be easily communicated as a set of verbal rules.
However the assumption that responses take the form of clear break points is often very misleading.
Although tree models find the best break points, they are often still arbitrary and do not necessarily
represent any real process.

There is no particular reason to prefer a single method over the others. In fact, until you have looked carefully
at your data you are unlikely to know which technique will produce the most insight. It is important to end
up with a defensible model which most closely meets the assumptions.

This class has shown that with practice and a little guidance it can be possible to combine all three techniques
in order to find out as much as possible about the data. This is a sensible approach to take, even though it
requires a bit more work. A write up of the analysis would sumarise the main findings from the technique
that produced the most defensible model in the main body of the report, and include appendices showing
the key results from alternative approaches. Ideally the data and R code used to fit the models would also
be supplied so that a reader could check the validity of the conclusions.

Do be aware that none of these methods (with the possible exception of tree models) will work well in the
case of data with large numbers of zeros, or with large and heterogeneous variability.
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Chapter 14

Analysis of multi-species data

One of the commonest tasks that quantitative ecologists face is the analysis of site by species matrices. Such
data are routinely produced as a result of many types of ecological survey. Because multiple species are
involved such data is always challenging to analyse. There are a lot of questions that can be addressed with
multispecies data. Many of these involve analysis of species diversity in some respect.

Species diversity is classically regarded as consisting of three components.

gamma = alpha + beta

Alpha diversity is measured at the scale of some sampling unit (i.e. plot or quadrat). Gamma diversity is
the overall diversity over the whole area that is being measured. Beta diversity is the difference between the
two. Or is it? The issues involved in analysing diversity are extremely complex and could form the basis of
a whole taught unit.

For the moment let’s accept this simplified version of the issue for the pragmatic purpose of finding some
methods that will allow us to work with a sites by species matrix.

14.1 Working with the sites by species matrix

One approach to working with the species by sites matrix would be to produce a measure that could be used
as a response variable in some other model. In this class we will look at some simple measures of species
diversity. The next class will apply some more complex methods in order to look at species composition.
However you first need to become familiar with the format of the matrix in order to work with the data
comfortably.

14.1.1 BCI data

Let’s look at some realistically complex data from a classic study of tropical diversity. The Smithsonian
institute has a permanent sample plot of 50 hectares of tropical forest located on the Island of Barro
Colorado in Panama.

The data set consists of a grid of completely censused plot of 100m x 100m within which all trees over 5cm
in diameter were counted and identified to species.
library(rgdal)
x<- rep(seq(625754, 626654, by=100),each=5)
y<- rep(seq(1011569, 1011969, by=100),len=50)
coords<-data.frame(x,y)
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dd<-data.frame(coords,id=1:100)
coordinates(dd)<-~x+y
proj4string(dd)<-CRS("+init=epsg:32617")
dd<-spTransform(dd, CRS("+init=epsg:4326"))
library(mapview)
m<-mapview(dd)
library(leaflet.extras)
m@map %>% addFullscreenControl()
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library(vegan)
library(reshape)
data(BCI)

You can look at this matrix using
str(BCI)

## 'data.frame': 50 obs. of 225 variables:
## $ Abarema.macradenia : int 0 0 0 0 0 0 0 0 0 1 ...
## $ Vachellia.melanoceras : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Acalypha.diversifolia : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Acalypha.macrostachya : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Adelia.triloba : int 0 0 0 3 1 0 0 0 5 0 ...
## $ Aegiphila.panamensis : int 0 0 0 0 1 0 1 0 0 1 ...
## $ Alchornea.costaricensis : int 2 1 2 18 3 2 0 2 2 2 ...
## $ Alchornea.latifolia : int 0 0 0 0 0 1 0 0 0 0 ...
## $ Alibertia.edulis : int 0 0 0 0 0 0 0 0 0 0 ...
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## $ Allophylus.psilospermus : int 0 0 0 0 1 0 0 0 0 0 ...
## $ Alseis.blackiana : int 25 26 18 23 16 14 18 14 16 14 ...
## $ Amaioua.corymbosa : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Anacardium.excelsum : int 0 0 0 0 0 0 0 1 0 0 ...
## $ Andira.inermis : int 0 0 0 0 1 1 0 0 1 0 ...
## $ Annona.spraguei : int 1 0 1 0 0 0 0 1 1 0 ...
## $ Apeiba.glabra : int 13 12 6 3 4 10 5 4 5 5 ...
## $ Apeiba.tibourbou : int 2 0 1 1 0 0 0 1 0 0 ...
## $ Aspidosperma.desmanthum : int 0 0 0 1 1 1 0 0 0 1 ...
## $ Astrocaryum.standleyanum : int 0 2 1 5 6 2 2 0 2 1 ...
## $ Astronium.graveolens : int 6 0 1 3 0 1 2 2 0 0 ...
## $ Attalea.butyracea : int 0 1 0 0 0 1 1 0 0 0 ...
## $ Banara.guianensis : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Beilschmiedia.pendula : int 4 5 7 5 8 6 5 9 11 14 ...
## $ Brosimum.alicastrum : int 5 2 4 3 2 2 6 4 3 6 ...
## $ Brosimum.guianense : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Calophyllum.longifolium : int 0 2 0 2 1 2 2 2 2 0 ...
## $ Casearia.aculeata : int 0 0 0 0 0 0 0 1 0 0 ...
## $ Casearia.arborea : int 1 1 3 2 4 1 2 3 9 7 ...
## $ Casearia.commersoniana : int 0 0 1 0 1 0 0 0 1 0 ...
## $ Casearia.guianensis : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Casearia.sylvestris : int 2 1 0 0 0 3 1 0 1 1 ...
## $ Cassipourea.guianensis : int 2 0 1 1 3 4 4 0 2 1 ...
## $ Cavanillesia.platanifolia : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Cecropia.insignis : int 12 5 7 17 21 4 0 7 2 16 ...
## $ Cecropia.obtusifolia : int 0 0 0 0 1 0 0 2 0 2 ...
## $ Cedrela.odorata : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Ceiba.pentandra : int 0 1 1 0 1 0 0 1 0 1 ...
## $ Celtis.schippii : int 0 0 0 2 2 0 1 0 0 0 ...
## $ Cespedesia.spathulata : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Chamguava.schippii : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Chimarrhis.parviflora : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Maclura.tinctoria : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Chrysochlamys.eclipes : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Chrysophyllum.argenteum : int 4 1 2 2 6 2 3 2 4 2 ...
## $ Chrysophyllum.cainito : int 0 0 0 0 0 0 1 0 0 0 ...
## $ Coccoloba.coronata : int 0 0 0 1 2 0 0 1 2 1 ...
## $ Coccoloba.manzinellensis : int 0 0 0 0 0 0 0 2 0 0 ...
## $ Colubrina.glandulosa : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Cordia.alliodora : int 2 3 3 7 1 1 2 0 0 2 ...
## $ Cordia.bicolor : int 12 14 35 23 13 7 5 10 7 13 ...
## $ Cordia.lasiocalyx : int 8 6 6 11 7 6 6 3 0 4 ...
## $ Coussarea.curvigemma : int 0 0 0 1 0 2 1 0 1 1 ...
## $ Croton.billbergianus : int 2 2 0 11 6 0 0 4 2 0 ...
## $ Cupania.cinerea : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Cupania.latifolia : int 0 0 0 1 0 0 0 0 0 0 ...
## $ Cupania.rufescens : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Cupania.seemannii : int 2 2 1 0 3 0 1 2 2 0 ...
## $ Dendropanax.arboreus : int 0 3 6 0 5 2 1 6 1 3 ...
## $ Desmopsis.panamensis : int 0 0 4 0 0 0 0 0 0 1 ...
## $ Diospyros.artanthifolia : int 1 1 1 1 0 0 0 0 0 1 ...
## $ Dipteryx.oleifera : int 1 1 3 0 0 0 0 2 1 2 ...
## $ Drypetes.standleyi : int 2 1 2 0 0 0 0 0 0 0 ...
## $ Elaeis.oleifera : int 0 0 0 0 0 0 0 0 0 0 ...
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## $ Enterolobium.schomburgkii : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Erythrina.costaricensis : int 0 0 0 0 0 3 0 0 1 0 ...
## $ Erythroxylum.macrophyllum : int 0 1 0 0 0 0 0 1 1 1 ...
## $ Eugenia.florida : int 0 1 0 7 2 0 0 1 1 3 ...
## $ Eugenia.galalonensis : int 0 0 0 0 0 0 0 1 0 0 ...
## $ Eugenia.nesiotica : int 0 0 1 0 0 0 5 4 3 0 ...
## $ Eugenia.oerstediana : int 3 2 5 1 5 2 2 3 3 3 ...
## $ Faramea.occidentalis : int 14 36 39 39 22 16 38 41 33 42 ...
## $ Ficus.colubrinae : int 0 1 0 0 0 0 0 0 0 0 ...
## $ Ficus.costaricana : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Ficus.insipida : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Ficus.maxima : int 1 0 0 0 0 0 0 0 0 0 ...
## $ Ficus.obtusifolia : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Ficus.popenoei : int 0 0 0 0 0 0 1 0 0 0 ...
## $ Ficus.tonduzii : int 0 0 1 2 1 0 0 0 0 0 ...
## $ Ficus.trigonata : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Ficus.yoponensis : int 1 0 0 0 0 1 1 0 0 0 ...
## $ Garcinia.intermedia : int 0 1 1 3 2 1 2 2 1 0 ...
## $ Garcinia.madruno : int 4 0 0 0 1 0 0 0 0 1 ...
## $ Genipa.americana : int 0 0 1 0 0 0 1 0 1 1 ...
## $ Guapira.myrtiflora : int 3 1 0 1 1 7 3 1 1 1 ...
## $ Guarea.fuzzy : int 1 1 0 1 3 0 0 2 0 3 ...
## $ Guarea.grandifolia : int 0 0 0 0 0 0 0 1 0 0 ...
## $ Guarea.guidonia : int 2 6 2 5 3 4 4 0 1 5 ...
## $ Guatteria.dumetorum : int 6 16 6 3 9 7 8 6 2 2 ...
## $ Guazuma.ulmifolia : int 0 0 0 1 0 0 0 0 0 0 ...
## $ Guettarda.foliacea : int 1 5 1 2 1 0 0 4 1 3 ...
## $ Gustavia.superba : int 10 5 0 1 3 1 8 4 4 4 ...
## $ Hampea.appendiculata : int 0 0 1 0 0 0 0 0 2 1 ...
## $ Hasseltia.floribunda : int 5 9 4 11 9 2 7 6 3 4 ...
## $ Heisteria.acuminata : int 0 0 0 0 1 1 0 0 0 0 ...
## $ Heisteria.concinna : int 4 5 4 6 4 8 2 5 1 5 ...
## $ Hirtella.americana : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Hirtella.triandra : int 21 14 5 4 6 6 7 14 8 7 ...
## $ Hura.crepitans : int 0 0 0 0 0 2 1 1 0 0 ...
## $ Hieronyma.alchorneoides : int 0 2 0 0 0 0 0 0 1 0 ...
## [list output truncated]
## - attr(*, "original.names")= chr "Abarema.macradenium" "Acacia.melanoceras" "Acalypha.diversifolia" "Acalypha.macrostachya" ...
dim(BCI)

## [1] 50 225

The researchers therefore found 225 species in the 50 plots. The area is quite homogeneous, but there is a
very high diversity of tree species. There are over 3000 species of tree in Panama.

Whether 225 is considered as a measure of gamma diversity (for the 50 plots) or alpha diversity (for 50 ha
plots within an area with a higher gamma diversity clearly depends on the scale at which diversity is being
observed and studies. There are complex issues here.

14.1.2 Reshaping the site by species matrix

Note that there are many zeros in the site by species matrix. As we have seen before, this is not strictly a
“raw” data format, as it can be derived from a more compact table format. Here is how to interchange the
two formats using the reshape package.
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# Make a data frame with Site ID as one of the columns
bci<-data.frame(Site=1:50,BCI)
#Melt the data frame using the Site ID as the identifier.
bci<-melt(bci,id="Site")
# Remove zeros
bci<-bci[bci$value>0,]

To reshape this long format back into a sites by species matrix form, with a column for the site name you
can run this line of code.
bci2<-data.frame(cast(bci,Site~variable,fill=0))

Check the format. You may often have to remove some of the columns in order to work with a matrix that
only consists of species abundence. In this case
bcimat<-as.matrix(bci2[,-1])

Let’s look at how many species are found in each plot. We can produce a vector of species richness using
the specnumber function.
S<-specnumber(BCI)
summary(S)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 77.00 86.00 91.00 90.78 94.00 109.00
hist(S,col="grey")
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So, species number could perhaps be used as a response variable if we had some explanatory variables for
each sub plot. We will come back to this issue later.
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14.1.3 Working with apply

Many of the methods for working with quadrat type data work directly on the broad, site by species matrix.

Although it is usually possible to use data frame objects in R for matrix based operations there is a difference
between a data frame and a true matrix. A matrix can only hold numbers, while a data frame can hold any
type of values. The “apply” command will work on any matrix, but would produce odd results on some data
frames.

When you ask R to apply a function to a matrix it is like writing a function at the end of a set of columns or
rows on an Excel spreadsheet and then dragging them across. This is only going to work if all the columns or
rows contain the same sort of values. If we want to apply a function (say sum) to rows of a matrix (say BCI)
we use a 1 to refer to rows and write apply(BCI,1,sum). If we want to apply the function to the columns
we write apply(BCI,2,sum) So, for example to find the abundances of the species. We can sum over all the
subplots to produce a vector of abundances.
abun<-apply(BCI,2,sum)

A few abundant species contribute a relatively large number of individuals to the total.
head(sort(abun,dec=T))

## Faramea.occidentalis Trichilia.tuberculata Alseis.blackiana
## 1717 1681 983
## Oenocarpus.mapora Poulsenia.armata Quararibea.asterolepis
## 788 755 724

14.1.4 Working with the long format data frame

It can be more convenient to use dplyr to produce tables. To do this we need to work with the reshaped long
data. When the matrix was put into the “molten” database form by the reshape operation species name
became the variable and the count of individual trees the value. So this code will produce a table.
library(dplyr)
library(DT)
bci %>% group_by(variable) %>% summarise(occur=n(),abun=sum(value)) -> abunds
datatable(abunds)
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Show	 10 	entries Search:

Showing	1	to	10	of	225	entries Previous 1 2 3 4 5 … 23 Next

variable occur abun

1 Abarema.macradenia 1 1

2 Vachellia.melanoceras 2 3

3 Acalypha.diversifolia 2 2

4 Acalypha.macrostachya 1 1

5 Adelia.triloba 27 92

6 Aegiphila.panamensis 18 23

7 Alchornea.costaricensis 44 156

8 Alchornea.latifolia 1 1

9 Alibertia.edulis 1 1

10 Allophylus.psilospermus 18 27

We can calculate the relative abundances of these top ten species as percentages using R
round(100*head(sort(abun,dec=T))/sum(abun),2)

## Faramea.occidentalis Trichilia.tuberculata Alseis.blackiana
## 8.00 7.83 4.58
## Oenocarpus.mapora Poulsenia.armata Quararibea.asterolepis
## 3.67 3.52 3.37

So even though there are 225 species recorded, 20% of the observations are from only three species.
summary(abun)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 7.00 25.00 95.36 82.00 1717.00

The median abundance is 25. 50% of the species have 25 or fewer individuals. This is a very typical pattern
in diversity data, whether in the tropics or elsewhere. Most individuals belong to a handful of common
species. However, most species have few individuals. To put it in a delberately perverse way common species
turn out to be rare and rare species are common!

This has generated a huge literature based on attempts to describe this pattern mathematically and find
underlying reasons for it. If we plot a histogram of abundances we can see the pattern.
hist(abun,col="grey")



258 CHAPTER 14. ANALYSIS OF MULTI-SPECIES DATA

Histogram of abun

abun

F
re

qu
en

cy

0 500 1000 1500

0
50

10
0

15
0

20
0

Taking logarithms
hist(log10(abun),col="grey")
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This may explain why there is a difference between the number of species found in each subplot and the
total number of species. It is simply chance. As there are so many rare species you would not expect
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eachsubplot to contain all the species. We can look at the pattern ofaccumulation of species that we obtain
if we aggregate plots randomly into larger units using the specaccum function.
AcCurve<-specaccum(BCI,"random")
plot(AcCurve,ci.type="poly", col="red", lwd=2, ci.lty=0, ci.col="grey")
boxplot(AcCurve, col="blue", pch="+",add=T)
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specpool(BCI)

## Species chao chao.se jack1 jack1.se jack2 boot boot.se n
## All 225 236.3732 6.54361 245.58 5.650522 247.8722 235.6862 3.468888 50

So species richness accumulates in a non linear manner. This has been modelled as a hyperbolic function in
order to estimate the asymptotic(maximum) species richness. Fitting a Lomolino curve actually produces
an estimate of the maximum number of species.
## Fit Lomolino model to the exact accumulation
AcCurve<-specaccum(BCI,"exact")
mod1 <- fitspecaccum(AcCurve, "lomolino")
coef(mod1)

## Asym xmid slope
## 258.440682 2.442061 1.858694
plot(AcCurve)
## Add Lomolino model using argument 'add'
plot(mod1, add = TRUE, col=2, lwd=2)
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There are a range of “non parametric” estimators of species richness that claim to do the same thing.
pool<-apply(BCI,2,sum)
estimateR(pool)

## S.obs S.chao1 se.chao1 S.ACE se.ACE
## 225.000000 237.214286 7.434824 238.217659 7.118588

However if we look at the accumulation on a log scale we may be less convinced that it is flattening off at
all.
plot(AcCurve, ci.type="poly", col="red", lwd=2, ci.lty=0, ci.col="grey",log="x")
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The practical implications are that when planning field work you may quickly observe at least half the species
that you are going to find in any given area. However rare species will continue to add to the list, and there
may be no real limit to this process.

Because the accumulation is more or less linear on a logarithmic scale there are clearly diminishing returns.
If, say, six more species are added by doubling the number of sites, four times the number of sites will be
needed to add six more, eight more for the next six and so on.

In this case you should notice that you expect to find around half the total number of species if you draw
two sites at random from the data set and count the numbers of species. This may be useful when designing
future studies.

The dune meadows data set found in the vegan package uses quadrat cover classes, so the numbers do not
represent counts. The default settings will be OK for this sort of data.
data(dune)
AcCurve<-specaccum(dune)
plot(AcCurve)
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14.2 Resampling individuals

Some of the methods for resampling species accumulation curves (eg. Colemans, and rarefaction) are based
on individuals. We can try an alternative form of resampling at the level of each plot.
resamp2 <-
function(X, rep=1,plot=FALSE) {
require(vegan)
Samp <- function(size, Indivs) { length(table(sample(Indivs, size,

replace=F))) }
N<-X[X>0]
TotSp <- length(N)
TotInds<-sum(N)#### Accumulation curve up to the maximum number of
#individuals



262 CHAPTER 14. ANALYSIS OF MULTI-SPECIES DATA

Sp <- 1:TotSp
Inds <- rep(1:TotSp, N)
Size <- rep(floor(TotInds*0.25):TotInds, rep) ###Note its(TotInds*0.25):TotInds
sp.count <- sapply(Size, Samp, Inds)
if(plot)plot(Size,sp.count,xlab="Number of individuals",ylab="Number of species",log="x")
Sp.Ac1<-lm(sp.count~log(Size))
Sp.Ac2<-lm(sp.count~log2(Size))
fa<-fisher.alpha(N)
res<-list(Logslope=Sp.Ac1$coefficients[2],Log2slope=Sp.Ac2$coefficients[2],Alpha=fa)
return(res)

}

resamp2(BCI[1,],plot=TRUE)
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## $Logslope
## log(Size)
## 30.50043
##
## $Log2slope
## log2(Size)
## 21.14129
##
## $Alpha
## [1] 35.67297
ans<-apply(BCI,1,resamp2)
res<-do.call("rbind",ans)
datatable(res) %>% formatRound(columns=c(1:3), digits=1)
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Show	 10 	entries Search:

Showing	1	to	10	of	50	entries Previous 1 2 3 4 5 Next

Logslope Log2slope Alpha

1 30.6 21.2 35.7

2 27.8 19.3 31.0

3 30.9 21.4 33.3

4 30.2 21.0 33.9

5 34.6 24.0 38.0

6 30.4 21.1 32.5

7 26.5 18.4 30.6

8 28.4 19.7 33.4

9 32.6 22.6 35.7

10 31.8 22.0 34.8

Once more, this pattern has some useful practical implications and some deeper theoretical ones. By looking
at the slope after log transforming to base 2 we obtain an estimate of the number of new species which would
be added each time we double the number of individuals counted.

14.2.1 Simpson’s and Shannon’s indices

Ok, we have seen that species abundance distributions tend to be very highly skewed, with a few common
species and many more rare species. The counts of individuals in any one sampling unit will reflect this.
Intuitively there is a difference between a sampling unit that contains 10 individuals of species A, 10 of
species B and 10 of species C when it is compared to a sampling unit that has 28 of species A and only one
individual of each of the other species.

There is a very long tradition in Ecology of measuring diversity using indices that combine measures of both
species richness and equitability. There are two widely used indices of diversity, and around 30 that are less
well known.

14.2.1.1 Simpson’s index

The simplest diversity index to understand is Simpson’s index.

Let’s take the example of an equitable community with ten individuals of five species. The proportional
abundance for each species is 0.2.
eq<-c(10,10,10,10,10)
prop<-eq/sum(eq)
prop

## [1] 0.2 0.2 0.2 0.2 0.2

Now imagine we draw an individual at random from the community. It could be of any one of the five species
with an equal probability of 0.2. Let’s say that it is species A. If we replace the individual and draw another,
what is the probability that it will also be of species A? The answer must also be 0.2. So the probability of
drawing two individuals of species A is 0.2 x 0.2 = 0.2² = 0.04.

The same applies to all the other species.
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So the overall probability of drawing two individuals of the same species is given by the sum of p². We can
call this D. If we subtract D from 1 we have the probability of drawing two individuals at random that are
of different species. Alternatively we can find the reciprocal of D which represents the number of equally
abundant species that would provide the probability obtained.

D =
∑

p2

simp = 1 − D

invsimp = 1
D

sprop<-prop^2
sprop

## [1] 0.04 0.04 0.04 0.04 0.04
D<-sum(sprop)
1-D

## [1] 0.8
D

## [1] 0.2

Now what do we find for a much less equitable community?
uneq<-c(100,10,2,2,1)
prop<-uneq/sum(uneq)
prop

## [1] 0.869565217 0.086956522 0.017391304 0.017391304 0.008695652

In this case we are much more likely to draw an individual of the common species first. We are then very
likely to draw another. So the probability of getting two individuals of the same species is much higher.
sprop<-prop^2
sprop

## [1] 7.561437e-01 7.561437e-03 3.024575e-04 3.024575e-04 7.561437e-05
D<-sum(sprop)
1-D

## [1] 0.2356144
1/D

## [1] 1.30824

The probability of obtaining two individuals of the same species is higher, as we are likely to draw two
individuals of the very common species. Thus the “effective” number of species as measured by the inverse
of Simpson’s index is lower.

Simpson’s index is influenced by both the number of species and the equitability of the distribution.

We can obtain a measure of pure equitability that takes a value between zero and 1 by dividing the inverse
of simpsons’s by the number of species.
Simp<-diversity(BCI,"simp")
Simp

## 1 2 3 4 5 6 7
## 0.9746293 0.9683393 0.9646078 0.9716117 0.9678267 0.9627557 0.9672014
## 8 9 10 11 12 13 14
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## 0.9671998 0.9534257 0.9663808 0.9658398 0.9550599 0.9692075 0.9718626
## 15 16 17 18 19 20 21
## 0.9709057 0.9686598 0.9545126 0.9676685 0.9655820 0.9748589 0.9686058
## 22 23 24 25 26 27 28
## 0.9548316 0.9723529 0.9694268 0.9726152 0.9709567 0.9669962 0.9499296
## 29 30 31 32 33 34 35
## 0.9481041 0.9602659 0.9635807 0.9565267 0.9586946 0.9607876 0.7983976
## 36 37 38 39 40 41 42
## 0.9648567 0.9565015 0.9365144 0.9360204 0.9137131 0.9731442 0.9731849
## 43 44 45 46 47 48 49
## 0.9569632 0.9578733 0.9528853 0.9646728 0.9672083 0.9676412 0.9609552
## 50
## 0.9679784
InvSimp<-diversity(BCI,"invsimp")
InvSimp

## 1 2 3 4 5 6 7
## 39.415554 31.584877 28.254778 35.225771 31.081658 26.849731 30.489077
## 8 9 10 11 12 13 14
## 30.487609 21.471056 29.744868 29.273803 22.251827 32.475442 35.539830
## 15 16 17 18 19 20 21
## 34.371014 31.907937 21.984098 30.929617 29.054548 39.775448 31.853042
## 22 23 24 25 26 27 28
## 22.139382 36.170213 32.708387 36.516636 34.431303 30.299530 19.971863
## 29 30 31 32 33 34 35
## 19.269343 25.167317 27.457940 23.002620 24.209883 25.502106 4.960258
## 36 37 38 39 40 41 42
## 28.454909 22.989309 15.751596 15.629977 11.589250 37.235945 37.292428
## 43 44 45 46 47 48 49
## 23.235938 23.737903 21.224806 28.306797 30.495526 30.903463 25.611603
## 50
## 31.228916
Es<-InvSimp/specnumber(BCI)
Es

## 1 2 3 4 5 6
## 0.42382316 0.37601044 0.31394198 0.37474225 0.30773918 0.31587919
## 7 8 9 10 11 12
## 0.37181801 0.34645010 0.23856729 0.31643477 0.33648049 0.26490271
## 13 14 15 16 17 18
## 0.34919830 0.36265132 0.36958080 0.34309609 0.23638815 0.34752379
## 19 20 21 22 23 24
## 0.26655549 0.39775448 0.32174790 0.24328991 0.36535568 0.34429881
## 25 26 27 28 29 30
## 0.34777748 0.37836597 0.30605585 0.23496309 0.22406212 0.25945688
## 31 32 33 34 35 36
## 0.35659662 0.26139341 0.28151027 0.27719680 0.05976214 0.30929249
## 37 38 39 40 41 42
## 0.26124214 0.19209264 0.18607116 0.14486563 0.36505828 0.42864860
## 43 44 45 46 47 48
## 0.27018532 0.29306053 0.26203464 0.32914881 0.29897574 0.33959850
## 49 50
## 0.28144618 0.33579479
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14.2.1.2 Shannon’s index

Shannon’s index (sometimes called the Shannon-Wienner index) is a commonly used diversity index that is
rather similar in practice to Simpson’s index. Unfortunately very few users of the index have an intuitive
idea of it’s meaning, as it is based on some rather obscure information theory.

H = −
∑

p.log(p)

The values that H can take tend to vary between 0.8 and 4. Values above 2.5 are high, but there is no simple
rule. Fortunately Shannon’s index can easily be converted into an index of equitability (or evenness) in a
rather similar way to Simpson’s by dividing it by the maximum value that it could take, which in this case
is log(S). The index downweights rare species rather more than does Simpson’s index.

The two indices basically measure the same thing. Simpson’s is much simpler to understand and can be
used by default. Shannon’s is used by tradition as it was thought to be the better measure for many years.
Shannon’s is therefore always worth calculating and reporting for comparative purposes.

Simpson’s and Shannon’s indices are always highly correlated. An empirical correlation between species
richness per se and evenness also tends to occur, but this is not automatic.
H<-diversity(BCI,"shannon")
Eh<-H/log(specnumber(BCI))
div<-data.frame(S,Simp,InvSimp,H,Es,Eh)
source("https://tinyurl.com/aqm-data/QEScript")
Xpairs(div)
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The main reason that quantitative ecologists calculte diversity indices in most cases is to relate them to
environmental variables. The two components of diversity are species richness and equitability (evenness).
Either or both of these can take be modelled as functions of environmental variables. A significant reduction
in evenness can, in appropriate circumstances, be taken as a symptom of environmental degradation. Low
evenness scores can be the result of a community being dominated by a few species that are tolerant to, or
favoured by, anthropogenic pollution or disturbance. However scores must be placed in context. The size of
the site (quadrat or soil core) can have a great influence on diversity indices and this must always be taken
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into account.

14.2.2 Exercises

14.2.2.1 Mexican trees

The first exercise involves data taken from three forest types in Mexico. The abundances are counts of
individual trees. What differences are there in species diversity between the forest types?
mexveg<- read.csv("http://tinyurl.com/QEcol2013/mexveg.csv")
mexmat<-mexveg[,-c(1,2)]
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Chapter 15

Crib sheets

The crib sheets contain R code for running analyses. There is no accompanying text to explain the output
nor advice on why to use the method. You must consult course material in order to decide whether it is
sensible to apply the method.

In order to use the cribsheets you must first become completely familiar with the process of loading data
into R’s memory by using either read.csv, for comma separated variable files or read_excel which can import
data directly from an excel spreadsheet file. You need to know how to put together your own annotated
markdown files, with embedded code chunks and annotated comments.

For each analysis an example data set is provided that is loaded from the /home/aqm/data folder on the
server. The file is converted into a data table in the cribsheet. This data table can be exported and then
used as the template for your own analysis.

To use the cribsheet, first look carefully at the format of the example data. Download this file and modify it
in Excel, changing the values and headers to match your own data. Then build a markdown file using your
own data as the input. Change any names of variables to match those used in your own data set. Providing
you paste in chunks from the crib sheet in the right order you can then build your own bespoke analysis for
your data that will reproduce the anaysis shown in the crobsheet. Order of the operations is very important,
as some code chnuks are precursors to others. If you understand the logic of the analysis this will not be a
problem.

15.1 Classical null hypothesis tests in R

This crib sheet shows how to run simple, introductory, statistical tests. These are very rarely the best
way to analyse your data. Model based procedures are available that produce a more informative analysis
in every case, including situations when a non-parametric test is often chosen.

15.1.1 Un-paired T-test

15.1.2 Data formats

15.1.2.1 Long format

d<-read.csv("/home/aqm/data/leaves.csv")
dt(d)

269



270 CHAPTER 15. CRIB SHEETS

Show	 10 	entries Search:

Showing	1	to	10	of	40	entries Previous 1 2 3 4 Next

leaf_type leaf_area

All All

1 shade 24

2 shade 24

3 shade 25

4 shade 36

5 shade 36

6 shade 35

7 shade 32

8 shade 44

9 shade 22

10 shade 32

	Copy CSV

15.1.2.2 Wide format

You may sometimes be given data in a wide format, with one column per group. This is not a standard data
frame. The most consistent approach is to turn it into a data frame
d2<-read.csv("/home/aqm/data/leaves2.csv")
dt(d2)

Show	 10 	entries Search:

Showing	1	to	10	of	20	entries Previous 1 2 Next

shade sun

All All

1 24 25

2 24 33

3 25 25

4 36 23

5 36 24

6 35 13

7 32 25

8 44 20

9 22 26

10 32 24

	Copy CSV

## To long format
d2<-gather(d2,key=leaf_type,value=leaf_area)
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dt(d2)

Show	 10 	entries Search:

Showing	1	to	10	of	40	entries Previous 1 2 3 4 Next

leaf_type leaf_area

All All

1 shade 24

2 shade 24

3 shade 25

4 shade 36

5 shade 36

6 shade 35

7 shade 32

8 shade 44

9 shade 22

10 shade 32

	Copy CSV

d2$id<-rep(1:20,times=2)
d2 %>% spread(key=leaf_type,value=leaf_area)

## id shade sun
## 1 1 24 25
## 2 2 24 33
## 3 3 25 25
## 4 4 36 23
## 5 5 36 24
## 6 6 35 13
## 7 7 32 25
## 8 8 44 20
## 9 9 22 26
## 10 10 32 24
## 11 11 26 17
## 12 12 28 20
## 13 13 30 19
## 14 14 26 24
## 15 15 23 35
## 16 16 29 25
## 17 17 39 27
## 18 18 35 25
## 19 19 29 32
## 20 20 35 27

15.1.3 Boxplot

g0<-ggplot(d,aes(x=leaf_type,y=leaf_area))
g_box<- g0 +geom_boxplot()
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15.1.4 Confidence interval plot

g0<-ggplot(d,aes(x=leaf_type,y=leaf_area))
g_conf <- g0 + stat_summary(fun.y=mean,geom="point") + stat_summary(fun.data=mean_cl_normal,geom="errorbar")
g_conf
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15.1.5 Dynamite plot

g0<-ggplot(d,aes(x=leaf_type,y=leaf_area))
g_bar <- g0 + stat_summary(fun.y=mean,geom="bar") + stat_summary(fun.data=mean_cl_normal,geom="errorbar")
g_bar
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15.1.6 T-test

t.test(d$leaf_area~d$leaf_type)

##
## Welch Two Sample t-test
##
## data: d$leaf_area by d$leaf_type
## t = 3.416, df = 37.343, p-value = 0.001546
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 2.462573 9.637427
## sample estimates:
## mean in group shade mean in group sun
## 30.50 24.45

15.2 Wilcoxon test (also known as ‘Mann-Whitney’ test)

15.2.1 Wide format

d2<-read.csv("/home/aqm/data/leaves2.csv")
dt(d2)
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Show	 10 	entries Search:

Showing	1	to	10	of	20	entries Previous 1 2 Next

shade sun

All All

1 24 25

2 24 33

3 25 25

4 36 23

5 36 24

6 35 13

7 32 25

8 44 20

9 22 26

10 32 24

	Copy CSV

15.2.2 Wilcoxon test

wilcox.test(d2$shade,d2$sun)

##
## Wilcoxon rank sum test with continuity correction
##
## data: d2$shade and d2$sun
## W = 307.5, p-value = 0.003672
## alternative hypothesis: true location shift is not equal to 0

15.3 Paired T-test

15.3.1 Data formats

15.3.1.1 Wide format

The wide format seems the natural one to use in this case.
d2<-read.csv("/home/aqm/data/paired2.csv")
dt(d2)
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Show	 10 	entries Search:

Showing	1	to	10	of	10	entries Previous 1 Next

id After Before

All All All

1 1 7 9

2 2 16 11

3 3 13 9

4 4 29 18

5 5 22 21

6 6 23 17

7 7 31 10

8 8 19 15

9 9 26 15

10 10 17 22

	Copy CSV

15.3.1.2 Long format

For the classic paired t-test function the long format is best changed to wide.
d<-read.csv("/home/aqm/data/paired1.csv")
dt(d)

Show	 10 	entries Search:

Showing	1	to	10	of	20	entries Previous 1 2 Next

id time val

All All All

1 1 Before 9

2 1 After 7

3 2 Before 11

4 2 After 16

5 3 Before 9

6 3 After 13

7 4 Before 18

8 4 After 29

9 5 Before 21

10 5 After 22

	Copy CSV

## Change to wide
d %>% spread(time,val) %>% dt()



15.3. PAIRED T-TEST 277

Show	 10 	entries Search:

Showing	1	to	10	of	10	entries Previous 1 Next

id After Before

All All All

1 1 7 9

2 2 16 11

3 3 13 9

4 4 29 18

5 5 22 21

6 6 23 17

7 7 31 10

8 8 19 15

9 9 26 15

10 10 17 22

	Copy CSV

15.3.2 T-test

t.test(d2$After,d2$Before,paired=TRUE)

##
## Paired t-test
##
## data: d2$After and d2$Before
## t = 2.3941, df = 9, p-value = 0.04028
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.3087225 10.8912775
## sample estimates:
## mean of the differences
## 5.6
d %>% spread(time,val) -> d2
t.test(d2$After,d2$Before,paired=TRUE)

##
## Paired t-test
##
## data: d2$After and d2$Before
## t = 2.3941, df = 9, p-value = 0.04028
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.3087225 10.8912775
## sample estimates:
## mean of the differences
## 5.6
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15.4 Paired Wilcoxon test

15.4.1 Wide format

The wide format seems the natural one to use in this case.
d2<-read.csv("/home/aqm/data/paired2.csv")
dt(d2)

Show	 10 	entries Search:

Showing	1	to	10	of	10	entries Previous 1 Next

id After Before

All All All

1 1 7 9

2 2 16 11

3 3 13 9

4 4 29 18

5 5 22 21

6 6 23 17

7 7 31 10

8 8 19 15

9 9 26 15

10 10 17 22

	Copy CSV

15.4.2 Wilcoxon test

wilcox.test(d2$Before,d2$After, paired=)

##
## Wilcoxon rank sum test with continuity correction
##
## data: d2$Before and d2$After
## W = 26, p-value = 0.07522
## alternative hypothesis: true location shift is not equal to 0

15.5 Correlation test

15.5.1 Data format

Only the standard data frame format is sensible in this case. However a data frame may consist of many
variables that can be correlated with each other. In this case more advanced methods avoid the need to
correlate each pair in turn. Fitting regresion lines is included in other crib sheets.
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d<-read.csv("/home/aqm/data/arne_pines_simple.csv")
dt(d)

Show	 10 	entries Search:

Showing	1	to	10	of	40	entries Previous 1 2 3 4 Next

pine_density twi

All All

1 0.6 3.05

2 1.3 3.57

3 2.2 3.43

4 3.8 3.23

5 0.6 4.21

6 2.9 3.5

7 3.8 3.79

8 4.1 3.59

9 2.2 4.25

10 2.5 4.72

	Copy CSV

15.5.2 Scatterplot

g0<-ggplot(d,aes(x=twi,y=pine_density)) +geom_point()
g0
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15.5.3 Pearson’s correlation test

cor.test(d$pine_density,d$twi)

##
## Pearson's product-moment correlation
##
## data: d$pine_density and d$twi
## t = 0.53448, df = 38, p-value = 0.5961
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2313542 0.3874638
## sample estimates:
## cor
## 0.08638047

15.5.4 Spearman’s rank correlation test

There are often ties, but this does not invalidate the test. R produces a warning in this case.
cor.test(d$pine_density,d$twi,method="spearman")

##
## Spearman's rank correlation rho
##
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## data: d$pine_density and d$twi
## S = 8988.5, p-value = 0.3339
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.1567992

15.6 Chi squared contingency tables

15.6.1 Data formats

15.6.1.1 Long format

The data will originally have been collected though classifying each observation. So, if the data consists
of mud cores that have been classified into two categories of substrate, mud or sand, and two categories
depending whether ragworm are present or absent you will produces a csv file with the format as shown.
d<-read.csv("/home/aqm/data/HedisteCat.csv")
dt(d)

Show	 10 	entries Search:

Showing	1	to	10	of	110	entries Previous 1 2 3 4 5 … 11 Next

Substrate Cat

All All

1 Mud Present

2 Mud Present

3 Mud Absent

4 Mud Present

5 Mud Absent

6 Mud Absent

7 Mud Present

8 Mud Present

9 Mud Present

10 Mud Present

	Copy CSV

15.6.1.2 Tablular format

You might already have tabulated the data in Excel. Providing that the table is in the top cells of the first
sheet of an Excel spreadsheet, this code will load the data.
library(readxl)
system ("cp contingency_table.xlsx /home/aqm/data/contingency_table.xlsx")
ct <-read_excel("/home/aqm/data/contingency_table.xlsx")
dt(ct)
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Show	 10 	entries Search:

Showing	1	to	2	of	2	entries Previous 1 Next

Substrate Absent Present

All All All

1 Mud 23 27

2 Sand 44 16

	Copy CSV

15.6.2 Table of counts

15.6.2.1 Table of counts using the data frame format

ct<-table(d)
ct

## Cat
## Substrate Absent Present
## Mud 23 27
## Sand 44 16
### Formatted version for HTMl printing
ct %>% kable() %>% kable_styling(bootstrap_options = "striped", full_width = F, position = "left")

Absent

Present

Mud

23

27

Sand

44

16

15.6.2.2 Table of counts using the ct format

## These data are already in tabular format, but some slight rearrangement is needed to turn them into an R table.
ct <-read_excel("contingency_table.xlsx")
ct<-as.data.frame(ct)
row.names(ct) <- ct[,1]
ct<-ct[,-1]
ct<-as.table(as.matrix(ct))
ct

## Absent Present
## Mud 23 27
## Sand 44 16
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### Formatted version for HTMl printing
ct %>% kable() %>% kable_styling(bootstrap_options = "striped", full_width = F, position = "left")

Absent

Present

Mud

23

27

Sand

44

16

15.6.3 Table of Proportions

15.6.3.1 Table of proportions

pt<-round(prop.table(ct) *100,1)
pt

## Absent Present
## Mud 20.9 24.5
## Sand 40.0 14.5
### Formatted version for HTMl printing
pt %>% kable() %>% kable_styling(bootstrap_options = "striped", full_width = F, position = "left")

Absent

Present

Mud

20.9

24.5

Sand

40.0

14.5

15.6.3.2 Table of proportions for rows

ptr<-round(prop.table(ct,margin=1) *100,1)
ptr

## Absent Present
## Mud 46.0 54.0
## Sand 73.3 26.7
ptr %>% kable() %>% kable_styling(bootstrap_options = "striped", full_width = F, position = "left")
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15.6.3.3 Table of proportions for columns

ptc<-round(prop.table(table(d),margin=2) *100,1)
ptc

## Cat
## Substrate Absent Present
## Mud 34.3 62.8
## Sand 65.7 37.2
ptc %>% kable() %>% kable_styling(bootstrap_options = "striped", full_width = F, position = "left")

Absent

Present

Mud

34.3

62.8

Sand

65.7

37.2

15.6.4 Plots

15.6.4.1 Mosaic plot

mosaicplot(ct)
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15.6.4.2 Barplot

ct_d<-data.frame(ct)

bc<-ggplot(ct_d,aes(x=Var2,y=Freq))+geom_bar(stat="identity")
bc + facet_wrap(~Var1)
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15.6.5 Chisq-test

chisq.test(ct)

##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: ct
## X-squared = 7.4482, df = 1, p-value = 0.00635

15.6.6 Fisher’s exact test

fisher.test(ct)

##
## Fisher's Exact Test for Count Data
##
## data: ct
## p-value = 0.005719
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.1287875 0.7387656
## sample estimates:
## odds ratio
## 0.3132911



Chapter 16

Regression and ANOVS crib sheet

This chapter provides all the code chunks that may be useful in the context of the data analysis component
of the assignment. The data set used to illustrate is the mussels data, that can be analysed using one way
ANOVA and regression in the context of calibrating a relationship.

You should look through ALL the handouts provided on these techniques to understand the underlying
theory. This “crib sheet” simply provides access to useful code.

1. ALWAYS CHECK THAT THE STEPS HAVE BEEN TAKEN IN THE RIGHT ORDER.
2. LOOK AT THE DATA YOU HAVE LOADED FIRST
3. USE YOUR OWN VARIABLE NAMES
4. PASTE IN CODE CHUNKS CAREFULLY; LEAVING GAPS BETWEEN EACH

CHUNK
5. COMMENT ON ALL THE STEPS

16.1 Packages needed

Include this chunk at the top of you analysis to ensure that you have all the packages. It also includes the
wrapper to add buttons to a data table if you want to use this. Remember that data tables can only be
included in HTML documents.
library(ggplot2)
library(dplyr)
library(mgcv)
library(DT)
theme_set(theme_bw())
dt<-function(x) DT::datatable(x,

filter = "top",
extensions = c('Buttons'), options = list(
dom = 'Blfrtip',
buttons = c('copy', 'csv', 'excel'), colReorder = TRUE

))

287
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Chapter 17

Univariate

17.1 Data

d<-read.csv("https://tinyurl.com/aqm-data/mussels.csv")
dt(d)

Show	 10 	entries Search:

Showing	1	to	10	of	113	entries Previous 1 2 3 4 5 … 12 Next

Lshell BTVolume Site

All All All

1 122.1 39 Site_6

2 100.1 21 Site_6

3 100.7 23 Site_6

4 102.3 22 Site_6

5 94.9 20 Site_6

6 116.9 22 Site_6

7 94.9 21 Site_6

8 91.5 18 Site_6

9 94.3 21 Site_6

10 85.6 15 Site_6

	Copy CSV

17.2 Data summaries for individual variables

Change the name of the variable to match a numerical variable in your own data set. The command removes
NAs just in case you have them
summary(d$Lshell,na.rm=TRUE)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

289
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## 61.9 97.0 106.9 106.8 118.7 132.6

17.3 Individual statistics for a single variable

Mean, median, standard deviation and variance.
mean(d$Lshell, na.rm=TRUE)

## [1] 106.835
median(d$Lshell, na.rm=TRUE)

## [1] 106.9
sd(d$Lshell, na.rm=TRUE)

## [1] 14.84384
var(d$Lshell, na.rm=TRUE)

## [1] 220.3397

17.4 Simple boxplot of one variable

Useful for your own quick visualisation.
boxplot(d$Lshell)
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17.5 Simple histogram of one variable

Useful for your own quick visualisation.
hist(d$Lshell)
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17.6 Neater histogram of one variable

This uses ggplot. Change the bin width if you want to use this.
g0<-ggplot(d,aes(x=d$Lshell))
g0+geom_histogram(color="grey",binwidth = 5)
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Chapter 18

Regression

18.1 Data

In this data set there are two numerical variables. So we can run a linear regresion.
d<-read.csv("https://tinyurl.com/aqm-data/mussels.csv")
dt(d)

Show	 10 	entries Search:

Showing	1	to	10	of	113	entries Previous 1 2 3 4 5 … 12 Next

Lshell BTVolume Site

All All All

1 122.1 39 Site_6

2 100.1 21 Site_6

3 100.7 23 Site_6

4 102.3 22 Site_6

5 94.9 20 Site_6

6 116.9 22 Site_6

7 94.9 21 Site_6

8 91.5 18 Site_6

9 94.3 21 Site_6

10 85.6 15 Site_6

	Copy CSV

18.2 Scatterplot without fitted line

g0<-ggplot(d,aes(x=Lshell,y=BTVolume))
g0+geom_point()
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18.3 Scatterplot with fitted line and labels

Type the text you want for the x and y axes to replace the variable names
g0<-ggplot(d,aes(x=Lshell,y=BTVolume))
g1<-g0+geom_point() + geom_smooth(method="lm")
g1 + xlab("Some text for the x asis") + ylab("Some text for the y axis")
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18.4 Fitting a model

Change the names of the variables in the first line.
mod<-lm(data= d, BTVolume~Lshell)

18.4.1 Model summary

summary(mod)

##
## Call:
## lm(formula = BTVolume ~ Lshell, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.828 -2.672 0.147 2.235 17.404
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.02385 3.33917 -10.79 <2e-16 ***
## Lshell 0.59754 0.03096 19.30 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##
## Residual standard error: 4.864 on 111 degrees of freedom
## Multiple R-squared: 0.7704, Adjusted R-squared: 0.7684
## F-statistic: 372.5 on 1 and 111 DF, p-value: < 2.2e-16

18.4.2 Model anova table

anova(mod)

## Analysis of Variance Table
##
## Response: BTVolume
## Df Sum Sq Mean Sq F value Pr(>F)
## Lshell 1 8811.4 8811.4 372.49 < 2.2e-16 ***
## Residuals 111 2625.7 23.7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

18.4.3 Confidence intervals for the model parameters

confint(mod)

## 2.5 % 97.5 %
## (Intercept) -42.6406346 -29.4070662
## Lshell 0.5361881 0.6588891

18.4.4 Extracting residuals

d$residuals<-residuals(mod)

18.4.5 Model diagnostics

Look at the regression handout to understand these plots.
plot(mod,which=1)
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plot(mod,which=5)



18.4. FITTING A MODEL 299

0.00 0.02 0.04 0.06 0.08

−
3

−
2

−
1

0
1

2
3

4

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(BTVolume ~ Lshell)

Cook's distance
0.5

0.5

1
Residuals vs Leverage

44

42

29

18.4.6 Spearman’s rank correlation

Used if all else fails. Not needed with these data, but included for reference.
g0<-ggplot(d,aes(x=rank(Lshell),y=rank(BTVolume)))
g0+geom_point() + geom_smooth(method="lm")
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cor.test(d$Lshell,d$BTVolume,method="spearman")

##
## Spearman's rank correlation rho
##
## data: d$Lshell and d$BTVolume
## S = 26143, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.8912809

18.5 Fitting a spline

Only use if you suspect that the relationship is not well described by a straight line.
library(mgcv)

g0<-ggplot(d,aes(x=Lshell,y=BTVolume))
g1<-g0 + geom_point() + geom_smooth(method="gam", formula =y~s(x))
g1 + xlab("Some text for the x asis") + ylab("Some text for the y axis")
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In this case the line is the same as the linear model. Get a summary using this code.
mod<-gam(data=d, BTVolume~s(Lshell))
summary(mod)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## BTVolume ~ s(Lshell)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 27.8142 0.4557 61.04 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Lshell) 1.493 1.847 198.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.77 Deviance explained = 77.3%
## GCV = 23.993 Scale est. = 23.463 n = 113

If you do use this model remember that its only needed if you can’t use linear regression. Report
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the ajusted R squared value, the estimated degrees of freedom and the p-value for the smooth term (not the
intercept). You must include the figure in your report, as that is the only way to show the shape of the
response.



Chapter 19

One way ANOVA

The purpose of one way anova is

1. Test whether there is greater variability between groups than within groups
2. Quantify any differences found between group means

19.1 Grouped boxplots

Exploratory plots
g0<-ggplot(d,aes(x=Site,y=Lshell))
g0+geom_boxplot()
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19.2 Histograms for each factor level

g0<-ggplot(d,aes(x=d$Lshell))
g1<-g0+geom_histogram(color="grey",binwidth = 5)

g1+facet_wrap(~Site) +xlab("Text for x label")
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19.3 Confidence interval plot

g0<-ggplot(d,aes(x=Site,y=Lshell))
g1<-g0+stat_summary(fun.y=mean,geom="point")
g1<-g1 +stat_summary(fun.data=mean_cl_normal,geom="errorbar")
g1 +xlab("Text for x label") + ylab("Text for y label")
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19.4 Fitting ANOVA

mod<-lm(data=d,Lshell~Site)

19.4.1 Model anova

anova(mod)

## Analysis of Variance Table
##
## Response: Lshell
## Df Sum Sq Mean Sq F value Pr(>F)
## Site 5 5525 1105 6.1732 4.579e-05 ***
## Residuals 107 19153 179
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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19.4.2 Model summary

19.4.2.1 Treatment effects

summary(mod)

##
## Call:
## lm(formula = Lshell ~ Site, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -44.906 -8.340 1.031 9.231 30.550
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 100.769 2.624 38.405 < 2e-16 ***
## SiteSite_2 8.467 3.748 2.259 0.0259 *
## SiteSite_3 6.037 5.409 1.116 0.2669
## SiteSite_4 -3.619 5.409 -0.669 0.5049
## SiteSite_5 18.697 3.925 4.763 6.02e-06 ***
## SiteSite_6 2.471 3.748 0.659 0.5111
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.38 on 107 degrees of freedom
## Multiple R-squared: 0.2239, Adjusted R-squared: 0.1876
## F-statistic: 6.173 on 5 and 107 DF, p-value: 4.579e-05

19.4.2.2 Change reference level

slevels<-levels(d$Site)
d$Site<-relevel(d$Site,"Site_5")
mod<-lm(data=d,Lshell~Site)
summary(mod)

##
## Call:
## lm(formula = Lshell ~ Site, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -44.906 -8.340 1.031 9.231 30.550
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 119.467 2.920 40.919 < 2e-16 ***
## SiteSite_1 -18.697 3.925 -4.763 6.02e-06 ***
## SiteSite_2 -10.231 3.960 -2.583 0.011135 *
## SiteSite_3 -12.660 5.559 -2.278 0.024739 *
## SiteSite_4 -22.317 5.559 -4.015 0.000111 ***
## SiteSite_6 -16.227 3.960 -4.097 8.15e-05 ***
## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.38 on 107 degrees of freedom
## Multiple R-squared: 0.2239, Adjusted R-squared: 0.1876
## F-statistic: 6.173 on 5 and 107 DF, p-value: 4.579e-05
d$Site <- factor(d$Site, levels=slevels)

19.4.2.3 Reverse levels

slevels<-levels(d$Site)
d$Site <- factor(d$Site, levels=rev(slevels))
mod<-lm(data=d,Lshell~Site)
summary(mod)

##
## Call:
## lm(formula = Lshell ~ Site, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -44.906 -8.340 1.031 9.231 30.550
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 103.240 2.676 38.583 < 2e-16 ***
## SiteSite_5 16.227 3.960 4.097 8.15e-05 ***
## SiteSite_4 -6.090 5.435 -1.121 0.265
## SiteSite_3 3.566 5.435 0.656 0.513
## SiteSite_2 5.996 3.784 1.584 0.116
## SiteSite_1 -2.471 3.748 -0.659 0.511
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.38 on 107 degrees of freedom
## Multiple R-squared: 0.2239, Adjusted R-squared: 0.1876
## F-statistic: 6.173 on 5 and 107 DF, p-value: 4.579e-05
d$Site <- factor(d$Site, levels=slevels)

19.4.2.4 Sum contrasts

Sum contrasts compare the effects to the mean. Notice that the last level is missing due to the way the
design matrix is formed. So it can be worth running sum contrasts twice, with the order reversed, to get all
the contrasts.
options(contrasts = c("contr.sum", "contr.poly"))
mod<-lm(data=d,Lshell~Site)
summary(mod)

##
## Call:
## lm(formula = Lshell ~ Site, data = d)
##



19.4. FITTING ANOVA 309

## Residuals:
## Min 1Q Median 3Q Max
## -44.906 -8.340 1.031 9.231 30.550
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 106.1114 1.4384 73.773 < 2e-16 ***
## Site1 -5.3421 2.5804 -2.070 0.0408 *
## Site2 3.1246 2.6158 1.195 0.2349
## Site3 0.6949 4.1214 0.169 0.8664
## Site4 -8.9614 4.1214 -2.174 0.0319 *
## Site5 13.3553 2.7841 4.797 5.24e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.38 on 107 degrees of freedom
## Multiple R-squared: 0.2239, Adjusted R-squared: 0.1876
## F-statistic: 6.173 on 5 and 107 DF, p-value: 4.579e-05
options(contrasts = c("contr.treatment", "contr.poly"))

19.4.2.4.1 Reverse order
d$Site <- factor(d$Site, levels=rev(slevels))
options(contrasts = c("contr.sum", "contr.poly"))
mod<-lm(data=d,Lshell~Site)
summary(mod)

##
## Call:
## lm(formula = Lshell ~ Site, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -44.906 -8.340 1.031 9.231 30.550
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 106.1114 1.4384 73.773 < 2e-16 ***
## Site1 -2.8714 2.6158 -1.098 0.2748
## Site2 13.3553 2.7841 4.797 5.24e-06 ***
## Site3 -8.9614 4.1214 -2.174 0.0319 *
## Site4 0.6949 4.1214 0.169 0.8664
## Site5 3.1246 2.6158 1.195 0.2349
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.38 on 107 degrees of freedom
## Multiple R-squared: 0.2239, Adjusted R-squared: 0.1876
## F-statistic: 6.173 on 5 and 107 DF, p-value: 4.579e-05
options(contrasts = c("contr.treatment", "contr.poly"))
d$Site <- factor(d$Site, levels=slevels)
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19.4.3 Tukey corrected pairwise comparisons

Use to find where signficant differences lie. This should confirm the pattern shown using the confidence
interval plot.
mod<-aov(data=d,Lshell~Site)
TukeyHSD(mod)

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Lshell ~ Site, data = d)
##
## $Site
## diff lwr upr p adj
## Site_2-Site_1 8.466769 -2.408905 19.342443 0.2201442
## Site_3-Site_1 6.037019 -9.660664 21.734702 0.8737518
## Site_4-Site_1 -3.619231 -19.316914 12.078452 0.9849444
## Site_5-Site_1 18.697436 7.305950 30.088922 0.0000867
## Site_6-Site_1 2.470769 -8.404905 13.346443 0.9859123
## Site_3-Site_2 -2.429750 -18.201132 13.341632 0.9976925
## Site_4-Site_2 -12.086000 -27.857382 3.685382 0.2355928
## Site_5-Site_2 10.230667 -1.262165 21.723498 0.1103764
## Site_6-Site_2 -5.996000 -16.977781 4.985781 0.6105029
## Site_4-Site_3 -9.656250 -29.069479 9.756979 0.7004668
## Site_5-Site_3 12.660417 -3.470986 28.791819 0.2123990
## Site_6-Site_3 -3.566250 -19.337632 12.205132 0.9862071
## Site_5-Site_4 22.316667 6.185264 38.448069 0.0015143
## Site_6-Site_4 6.090000 -9.681382 21.861382 0.8718474
## Site_6-Site_5 -16.226667 -27.719498 -4.733835 0.0011239

Plot of results of Tukey HSD
plot(TukeyHSD(mod))
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19.4.4 Anova with White’s correction

This will give you the overall Anova table if there is heterogeneity of variance.
library(sandwich)
library(car)
mod<-lm(Lshell~Site, data=d)
Anova(mod,white.adjust='hc3')

## Analysis of Deviance Table (Type II tests)
##
## Response: Lshell
## Df F Pr(>F)
## Site 5 9.9682 7.541e-08 ***
## Residuals 107
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

19.4.5 Bayesian model with shrinkage

Specialist model. Probably the best for these particular data, but seek guidance. Don’t do this at home
kids!
library(rjags)
library(ggmcmc)
rand_mod="
model {

### Likeihood



312 CHAPTER 19. ONE WAY ANOVA

for (i in 1:N) { ## Loop through observations
mu[i]<-mu_r+Beta[ind[i]] ## Beta is added to an overall mean
y[i] ~ dnorm(mu[i],tau[ind[i]]) ## Set an independent tau for each group agan. A pooled variance model would also work here

}

for (j in 1:p) {
Beta[j]~dnorm(0,tau_r) ## A single tau represents the variance between group # means
tau[j] ~ dgamma(scale, rate)
for (n in 1:(j-1)){
Difbeta[n,j]<-Beta[n]-Beta[j]

}
}

scale ~ dunif(0, 1)
rate ~ dunif(0, 1)
tau_r ~ dgamma(scale,rate)
sigma_r <- 1/sqrt(tau_r)
mu_r ~ dnorm(0,0.00001) ## Prior for the overall mean

}"

data=list(y=d$Lshell,
ind=as.numeric(d$Site),
N=length(d$Lshell),
p=length(levels(d$Site)),
overall_mean=mean(d$Lshell))

model=jags.model(textConnection(rand_mod),data=data)

## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 113
## Unobserved stochastic nodes: 16
## Total graph size: 288
##
## Initializing model
update(model,n.iter=1000)
output=coda.samples(model=model,variable.names=c("sigma_r","mu_r","Difbeta","Beta"),n.iter=100000,thin=10)
ms <-ggs(output)
mt<-filter(ms,grepl("Beta",Parameter))
ggs_caterpillar(mt) +geom_vline(xintercept = 0,col="red")
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summary(output)

##
## Iterations = 2010:102000
## Thinning interval = 10
## Number of chains = 1
## Sample size per chain = 10000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## Beta[1] -5.2222 4.510 0.04510 0.07726
## Beta[2] 2.1001 4.600 0.04600 0.07920
## Beta[3] 0.1333 6.228 0.06228 0.07727
## Beta[4] -4.9979 6.131 0.06131 0.07190
## Beta[5] 11.6084 4.493 0.04493 0.08085
## Beta[6] -3.2314 4.363 0.04363 0.07733
## Difbeta[1,2] -7.3223 3.613 0.03613 0.03734
## Difbeta[1,3] -5.3555 6.437 0.06437 0.06437
## Difbeta[2,3] 1.9668 6.507 0.06507 0.06507
## Difbeta[1,4] -0.2242 6.178 0.06178 0.06594
## Difbeta[2,4] 7.0980 6.413 0.06413 0.06971
## Difbeta[3,4] 5.1312 8.081 0.08081 0.07870
## Difbeta[1,5] -16.8306 3.279 0.03279 0.03326
## Difbeta[2,5] -9.5083 3.331 0.03331 0.03289
## Difbeta[3,5] -11.4752 6.372 0.06372 0.06715
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## Difbeta[4,5] -16.6064 6.384 0.06384 0.06994
## Difbeta[1,6] -1.9908 3.092 0.03092 0.03092
## Difbeta[2,6] 5.3315 3.341 0.03341 0.03401
## Difbeta[3,6] 3.3647 6.303 0.06303 0.06548
## Difbeta[4,6] -1.7665 6.121 0.06121 0.06555
## Difbeta[5,6] 14.8399 2.942 0.02942 0.02942
## mu_r 106.7915 4.130 0.04130 0.07738
## sigma_r 8.2238 3.674 0.03674 0.04701
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## Beta[1] -14.371 -7.9339 -5.19670 -2.55585 3.8319
## Beta[2] -6.711 -0.7170 1.98651 4.75840 11.7173
## Beta[3] -12.345 -3.7393 0.08753 3.92107 12.8327
## Beta[4] -17.807 -8.7131 -4.71930 -1.05039 6.4925
## Beta[5] 3.465 8.7919 11.37242 14.14664 21.3074
## Beta[6] -11.837 -5.8286 -3.27427 -0.71021 5.6321
## Difbeta[1,2] -14.379 -9.7944 -7.32246 -4.84330 -0.3078
## Difbeta[1,3] -18.333 -9.4895 -5.27167 -1.18625 7.2620
## Difbeta[2,3] -10.525 -2.2210 1.91444 6.10535 14.9385
## Difbeta[1,4] -12.335 -4.2228 -0.26517 3.73730 12.1918
## Difbeta[2,4] -5.128 2.8516 6.97407 11.26692 20.0822
## Difbeta[3,4] -10.529 -0.2333 4.91541 10.28038 21.9897
## Difbeta[1,5] -23.157 -19.0516 -16.88190 -14.63848 -10.3687
## Difbeta[2,5] -16.090 -11.6641 -9.47519 -7.33179 -3.0101
## Difbeta[3,5] -24.781 -15.4480 -11.33631 -7.30224 0.6461
## Difbeta[4,5] -29.457 -20.8265 -16.45207 -12.32261 -4.3211
## Difbeta[1,6] -8.105 -4.0324 -1.99638 0.04918 4.0750
## Difbeta[2,6] -1.313 3.1251 5.35675 7.54022 11.8889
## Difbeta[3,6] -9.318 -0.7084 3.38617 7.37996 15.8448
## Difbeta[4,6] -14.043 -5.6816 -1.69075 2.13254 10.2866
## Difbeta[5,6] 8.958 12.8888 14.85055 16.81179 20.6069
## mu_r 98.169 104.4844 106.89238 109.20635 114.8737
## sigma_r 3.744 5.8104 7.40849 9.65818 17.7280
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Fitting curves cribsheet

20.1 Fitting polynomials

20.2 The data

d<-read.csv("/home/aqm/course/data/marineinverts.csv")
DT::datatable(d)

Show	 10 	entries Search:

Showing	1	to	10	of	45	entries Previous 1 2 3 4 5 Next

richness grain height salinity

1 0 450 2.255 27.1

2 2 370 0.865 27.1

3 8 192.5 1.19 29.6

4 13 194.5 -1.336 29.4

5 17 197 -1.334 29.6

6 10 200 -1.036 29.4

7 10 202 -0.684 29.4

8 9 205.5 0.82 29.6

9 19 205.5 0.061 29.6

10 8 211.5 0.635 29.6

20.3 Fitting linear model

20.3.1 Linear model fit

mod<-lm(data=d,richness~grain)

315
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20.3.2 Linear model anova and summary

anova(mod)

## Analysis of Variance Table
##
## Response: richness
## Df Sum Sq Mean Sq F value Pr(>F)
## grain 1 385.13 385.13 23.113 1.896e-05 ***
## Residuals 43 716.52 16.66
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mod)

##
## Call:
## lm(formula = richness ~ grain, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.8386 -2.0383 -0.3526 2.5768 11.6620
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.669264 2.767726 6.745 3.01e-08 ***
## grain -0.046285 0.009628 -4.808 1.90e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.082 on 43 degrees of freedom
## Multiple R-squared: 0.3496, Adjusted R-squared: 0.3345
## F-statistic: 23.11 on 1 and 43 DF, p-value: 1.896e-05

20.3.3 Linear model plot

library(ggplot2)
theme_set(theme_bw())
g0<-ggplot(d,aes(x=grain,y=richness))
g1<-g0+geom_point() + geom_smooth(method="lm")
g1 + xlab("Mean grain size") + ylab("Species richness")
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20.3.4 Reset test

We can check whether a strait line is a good representation of the pattern using the reset test that will have
a low p-value if the linear form of the model is not a good fit.
library(lmtest)
resettest(d$richness ~ d$grain)

##
## RESET test
##
## data: d$richness ~ d$grain
## RESET = 19.074, df1 = 2, df2 = 41, p-value = 1.393e-06

20.3.5 Durbin Watson test

The Durbin Watson test which helps to confirm serial autocorrelation that may be the result of a misformed
model will often also be significant when residuals cluster on one side of the line. In this case it was not, but
this may be because there were too few data points.
dwtest(d$richness~d$grain)

##
## Durbin-Watson test
##
## data: d$richness ~ d$grain
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## DW = 1.7809, p-value = 0.1902
## alternative hypothesis: true autocorrelation is greater than 0

20.3.6 Diagnostic plot after fitting linear model

library(ggfortify)

## Error in library(ggfortify): there is no package called 'ggfortify'
theme_set(theme_bw())
autoplot(mod, which = 1)

## Error: Objects of type lm not supported by autoplot.

20.4 Fitting quadratic model

20.4.1 Quadratic model fit

mod2<-lm(data=d,richness~grain + I(grain^2))

20.4.2 Quadratic model anova and summary

anova(mod2)

## Analysis of Variance Table
##
## Response: richness
## Df Sum Sq Mean Sq F value Pr(>F)
## grain 1 385.13 385.13 29.811 2.365e-06 ***
## I(grain^2) 1 173.93 173.93 13.463 0.00068 ***
## Residuals 42 542.59 12.92
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mod2)

##
## Call:
## lm(formula = richness ~ grain + I(grain^2), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.5779 -2.5315 0.2172 2.1013 8.3415
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 53.0133538 9.6721492 5.481 2.21e-06 ***
## grain -0.2921821 0.0675505 -4.325 9.19e-05 ***
## I(grain^2) 0.0004189 0.0001142 3.669 0.00068 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##
## Residual standard error: 3.594 on 42 degrees of freedom
## Multiple R-squared: 0.5075, Adjusted R-squared: 0.484
## F-statistic: 21.64 on 2 and 42 DF, p-value: 3.476e-07

20.4.3 Quadratic model plot

library(ggplot2)
theme_set(theme_bw())
g0<-ggplot(d,aes(x=grain,y=richness))
g1<-g0+geom_point() + geom_smooth(method="lm", formula=y~x+I(x^2), se=TRUE)
g1 + xlab("Mean grain size") + ylab("Species richness")
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20.4.4 Diagnostic plot after fitting quadratic

library(ggfortify)

## Error in library(ggfortify): there is no package called 'ggfortify'
theme_set(theme_bw())
autoplot(mod2, which = 1)

## Error: Objects of type lm not supported by autoplot.
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20.4.5 Comparing fits

anova(mod,mod2)

## Analysis of Variance Table
##
## Model 1: richness ~ grain
## Model 2: richness ~ grain + I(grain^2)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 43 716.52
## 2 42 542.59 1 173.93 13.463 0.00068 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Fitting splines using mgcv

21.1 Fiting model

library(mgcv)
mod3<-gam(data=d,richness~s(grain))

21.2 Summary model

summary(mod3)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## richness ~ s(grain)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.6889 0.4601 12.36 2.6e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(grain) 3.615 4.468 15.92 3.25e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.619 Deviance explained = 65.1%
## GCV = 10.616 Scale est. = 9.5269 n = 45
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21.3 Plotting model

theme_set(theme_bw())
g0<-ggplot(d,aes(x=grain,y=richness))
g1<-g0+geom_point() + stat_smooth(method = "gam", formula = y ~ s(x))
g1 + xlab("Mean grain size") + ylab("Species richness")
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Chapter 22

Non linear model

22.1 Rectangular hyperbola of the Michaelis-Menten form

C = sR

F + R

Where

• C is resource consumption,
• R is the amount or density of the resource,
• s is the asymptotic value and
• F represents the density of resource at which half the asymptotic consumption is expected to occur.

This model is not linear in its parameters.

22.1.1 Fitting model

Starting values need to be provided. Plot the data first to estimate the asymptote
d<-read.csv("/home/aqm/course/data/Hollings.csv")
g0<-ggplot(data=d,aes(x=Resource,y=Consumption)) + geom_point()
g0
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22.1.2 Fitting the model

nlmod<-nls(Consumption~s*Resource/(F+Resource),data = d,start = list( F = 20,s=20))

22.1.3 Curve fit

g0<-ggplot(data=d,aes(x=Resource,y=Consumption))
g1<-g0+geom_point()
g2<-g1+geom_smooth(method="nls",formula=y~s*x/(F+x),method.args=list(start = c( F = 20,s=20)), se=FALSE)
g2
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22.1.4 Curve fit with confidence intervals

This needs the propagate package.
require(propagate)
newdata<-data.frame(Resource=seq(min(d$Resource),max(d$Resource),length=100))
pred_model <- predictNLS(nlmod, newdata=newdata,nsim = 10000)
conf_model <- pred_model$summary

newdata<-data.frame(newdata,conf_model)

g2 + geom_line(data=newdata,aes(x=Resource,y=Prop.2.5.),col="black",lty=2) + geom_line(data=newdata,aes(x=Resource,y=Prop.97.5.),col="black",lty=2)
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22.2 Holling’s disc equation

The classic version of Hollings disk equation used in the article is written as

R = aD
1+aDH

Where

• F = feeding rate (food items)
• D = food density (food items m−2)
• a = searching rate (m2s−1)
• H = handling time (s per food item).

22.2.1 The data

d<-read.csv("/home/aqm/course/data/buntings.csv")
g0<-ggplot(data=d,aes(x=density,y=rate)) + geom_point()
g0
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22.2.2 Fitting the model

d<-read.csv("/home/aqm/course/data/buntings.csv")
HDmod<-nls(rate~a*density/(1+a*density*H),data = d,start = list(a =0.001,H=2))

22.2.3 Confidence intervals for parameters

confint(HDmod)

## 2.5% 97.5%
## a 0.002593086 0.006694939
## H 1.713495694 1.976978655

22.2.4 Plot with fitted curve

g0<-ggplot(data=d,aes(x=density,y=rate))
g1<-g0+geom_point()
g2<-g1+geom_smooth(method="nls",formula=y~a*x/(1+a*x*H),method.args=list(start = c(a = 0.01,H=2)), se=FALSE)
g2



328 CHAPTER 22. NON LINEAR MODEL

0.2

0.4

0.6

0.8

0 1000 2000 3000 4000

density

ra
te

22.2.5 Plot with confidence intervals

require(propagate)
newdata<-data.frame(density=seq(0,max(d$density),length=100))
pred_model <- predictNLS(HDmod, newdata=newdata,nsim = 10000)
conf_model <- pred_model$summary

newdata<-data.frame(newdata,conf_model)

g3<-g2 + geom_line(data=newdata,aes(x=density,y=Prop.2.5.),col="black",lty=2) + geom_line(data=newdata,aes(x=density,y=Prop.97.5.),col="black",lty=2)
g3
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22.2.6 Non linear quantile regression

library(quantreg)
QuantMod90<-nlrq(rate~a*density/(1+a*density*H),data = d,start = list(a =0.001,H=2),tau=0.9)
QuantMod10<-nlrq(rate~a*density/(1+a*density*H),data = d,start = list(a =0.001,H=2),tau=0.1)
newdata$Q90<- predict(QuantMod90, newdata = newdata)
newdata$Q10 <- predict(QuantMod10, newdata = newdata)

g3 + geom_line(data=newdata,aes(x=density,y=Q90),col="red") + geom_line(data=newdata,aes(x=density,y=Q10),col="red")
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Chapter 23

Analysis of covariance and mixed
effects crib

23.1 Data

Fixed effects analysis of covariance is useful when there are few groups. With many groups the groups of
observations may be treated as a random effect. In this case the grouping variable is the individual whale.
Whales<-read.csv("https://tinyurl.com/aqm-data/whaleteeth.csv")
ylabel <-expression(paste(delta^{15}, "N"))
xlabel<-"Estimated age"
## Select just three whales
Whales %>% filter(Whale %in% levels(Whales$Whale)[c(7,9,11)]) -> Whales3

23.1.1 Plot the patterns grouped by individual

library(ggplot2)
theme_set(theme_bw())
g0<-ggplot(data=Whales3,aes(x=Age,y=X15N))
g1<-g0+geom_point()+ labs(y = ylabel,x=xlabel)
g1+facet_wrap("Whale") +geom_smooth(method="lm")
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23.1.2 Analysis of covariance

A significant interaction shows that the slope of a linea model differs between individuals
mod1 <-lm(data=Whales3,X15N~Age+Whale)
mod2 <-lm(data=Whales3,X15N~Age*Whale)
anova(mod1,mod2)

## Analysis of Variance Table
##
## Model 1: X15N ~ Age + Whale
## Model 2: X15N ~ Age * Whale
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 108 33.686
## 2 106 27.419 2 6.2671 12.114 1.827e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

23.2 Linear mixed effects

23.2.1 Intercept only

library(lmerTest)
intercept.mod<-lmer(X15N~Age+(1|Whale),data=Whales)
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intercept.mod

## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: X15N ~ Age + (1 | Whale)
## Data: Whales
## REML criterion at convergence: 784.3965
## Random effects:
## Groups Name Std.Dev.
## Whale (Intercept) 0.6139
## Residual 0.8149
## Number of obs: 307, groups: Whale, 11
## Fixed Effects:
## (Intercept) Age
## 12.25874 0.09245
anova(intercept.mod)

## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## Age 216.11 216.11 1 301.39 325.46 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

23.2.2 Slope model

slope.mod<-lmer(X15N~Age+(Age|Whale),data=Whales)
slope.mod

## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: X15N ~ Age + (Age | Whale)
## Data: Whales
## REML criterion at convergence: 657.3864
## Random effects:
## Groups Name Std.Dev. Corr
## Whale (Intercept) 1.3138
## Age 0.0734 -0.90
## Residual 0.6246
## Number of obs: 307, groups: Whale, 11
## Fixed Effects:
## (Intercept) Age
## 12.40999 0.07915
## convergence code 0; 1 optimizer warnings; 0 lme4 warnings
anova(slope.mod)

## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## Age 4.7217 4.7217 1 10.212 12.102 0.005751 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



334 CHAPTER 23. ANALYSIS OF COVARIANCE AND MIXED EFFECTS CRIB

23.2.3 Plot intercept model

Whales$fixed<-predict(intercept.mod,re.form=NA)
Whales$rand<-predict(intercept.mod)
g0<-ggplot(Whales,aes(x=Age,y=X15N))
g1<-g0+geom_point()
g1<-g1+geom_line(aes(x=Age,y=fixed),colour=2,lwd=1)
g1<-g1+geom_line(aes(x=Age,y=rand),colour=4,lwd=1)
g1<-g1+labs(y = ylabel,x=xlabel,title="Fixed and random effects")
g1+facet_wrap("Whale")
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23.2.4 Plot slope model

Whales$fixed<-predict(slope.mod,re.form=NA)
Whales$rand<-predict(slope.mod)
g0<-ggplot(Whales,aes(x=Age,y=X15N))
g1<-g0+geom_point()
g1<-g1+geom_line(aes(x=Age,y=fixed),colour=2,lwd=1)
g1<-g1+geom_line(aes(x=Age,y=rand),colour=4,lwd=1)
g1<-g1+labs(y = ylabel,x=xlabel,title="Fixed and random effects")
g1+facet_wrap("Whale")
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23.3 GAMM model

23.3.1 Fit GAMM model

library(gamm4)
gamm.mod<-gamm4(X15N~s(Age),data=Whales,random = ~ (Age|Whale))
gamm.mod

## $mer
## Linear mixed model fit by REML ['lmerMod']
## REML criterion at convergence: 619.3208
## Random effects:
## Groups Name Std.Dev. Corr
## Whale (Intercept) 1.34561
## Age 0.07326 -0.91
## Xr s(Age) 2.55534
## Residual 0.57809
## Number of obs: 307, groups: Whale, 11; Xr, 8
## Fixed Effects:
## X(Intercept) Xs(Age)Fx1
## 13.8106 -0.2491
##
## $gam
##
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## Family: gaussian
## Link function: identity
##
## Formula:
## X15N ~ s(Age)
##
## Estimated degrees of freedom:
## 5.56 total = 6.56
##
## lmer.REML score: 619.3208

23.3.2 Plot GAMM model

Whales$fixed<-predict(gamm.mod$gam)
Whales$rand<-predict(gamm.mod$mer)
g0<-ggplot(Whales,aes(x=Age,y=X15N))
g1<-g0+geom_point()
g1<-g1+geom_line(aes(x=Age,y=fixed),colour=2,lwd=1)
g1<-g1+geom_line(aes(x=Age,y=rand),colour=4,lwd=1)
g1<-g1+labs(y = ylabel,x=xlabel,title="Fixed and random splines")
g1+facet_wrap("Whale")
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23.3.3 Plot GAMM with CIs

Whales$fixedse<-predict(gamm.mod$gam,se=T)$se
g0<-ggplot(Whales,aes(x=Age,y=X15N))
g1<-g0+geom_point()
g1<-g1+geom_line(aes(x=Age,y=fixed),colour=2,lwd=1)
g1<-g1+geom_line(aes(x=Age,y=fixed+2*fixedse),colour=2,lty=2)
g1<-g1+geom_line(aes(x=Age,y=fixed-2*fixedse),colour=2,lty=2)
g1<-g1+geom_line(aes(x=Age,y=rand),colour=4,lwd=1)
g1<-g1+labs(y = ylabel,x=xlabel,title="Fixed and random splines")
g1+facet_wrap("Whale")
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23.3.4 Plot fixed effects with CIS taking into account random effects

g0<-ggplot(Whales,aes(x=Age,y=X15N,color=Whale))
g1<-g0+geom_point()
g1<-g1+geom_line(aes(x=Age,y=fixed),colour=1,lwd=1)
g1<-g1+geom_line(aes(x=Age,y=fixed+2*fixedse),colour=1,lty=2)
g1<-g1+geom_line(aes(x=Age,y=fixed-2*fixedse),colour=1,lty=2)
g1<-g1+labs(y = ylabel,x=xlabel,title="Fixed effects spline with CIs")
g1
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Chapter 24

Bubble plot crib sheet

Hans Roslin, who died in 2017, was considered to be one of the greatest data communicator of all time.
Roslin’s skill was an ability to select informative ways of displaying large data sets in order to engage the
audience. There are many videos of his talks on You Tube and Ted talks.

https://www.youtube.com/watch?v=jbkSRLYSojo

Roslin’s original figures were constructed by a team of data analysts, programmers and analysts working
with the professor. The later figures that he used look as if they probably were first built up using Tableau
and then touched up and animated by the team. Can these sophisticated figures be built easily in R? The
answer is that it is surprisingly simple. The figures require very few lines of code.

24.1 Getting the data

A suitable data set is provided by the WDI package which can search, extract and format data from the
World Bank’s World Development Indicators.
library(WDI)
library(dplyr)
library(ggplot2)
library(plotly)
library(ggthemes)

The field names and their meanings can be searched for in the table below.
dd<-data.frame(WDIsearch( field='name', cache=NULL) )
DT::datatable(dd)

339
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Show	 10 	entries Search:

Showing	1	to	10	of	493	entries Previous 1 2 3 4 5 … 50 Next

indicator name

1 BX.TRF.PWKR.GD.ZS Workers'	remittances,	receipts	(%	of	GDP)

2 BX.TRF.PWKR.DT.GD.ZS Personal	remittances,	received	(%	of	GDP)

3 BX.TRF.MGR.DT.GD.ZS Migrant	remittance	inflows	(%	of	GDP)

4 BX.KLT.DINV.WD.GD.ZS Foreign	direct	investment,	net	inflows	(%	of	GDP)

5 BX.KLT.DINV.DT.GD.ZS Foreign	direct	investment,	net	inflows	(%	of	GDP)

6 BX.GSR.MRCH.ZS Merchandise	exports	(BOP):	percentage	of	GDP	(%)

7 6.0.GDPpc_constant GDP	per	capita,	PPP	(constant	2011	international	$)

8 6.0.GDP_usd GDP	(constant	2005	$)

9 6.0.GDP_growth GDP	growth	(annual	%)

10 6.0.GDP_current GDP	(current	$)

24.2 Selecting some indicators

All the indicators are not available for all the years, but a useful set can be pulled from the data base. The
data includes aggregates (regions and global figures) than can be filtered out to leave just the countries.
d <- WDI(country="all", indicator=c("NY.GDP.PCAP.CD", "SP.POP.TOTL", "SP.DYN.LE00.IN","EG.EGY.PRIM.PP.KD","NV.AGR.TOTL.ZS"), start=1900, end=2018, extra = TRUE)
names(d)[4:8]<- c("GDP_per_capita", "Population_total", "Life_expectancy","Energy_intensity_MJ_GDP","Agriculture_percent_GDP") ## Set the names
d %>% filter(region !="Aggregates") -> d ## Filter out the aggregated totals

24.3 Forming bubble plots

Han’s Roslin’s data animations effectively showed four dimensions of data in one. A third dimension was
added to the scatter-plots in the form of the size of the bubble. In most of the plots this was the population
size. The animation was over time, adding a fourth dimension. In order to produce a static graph a smaller
subset of the years can be shown side by side.

So the tricks used in the R code are to add in a size aesthetic to represent population and to facet wrap on
year. Some additional information can be added by colouring the points according to region. If a filled point
style (21) is chosen the fill can be set as an aesthetic. Some tweaking of axes is necessary. A log scale on the
x axis spreads out the points more effectively and the y scale can be constrained to a range to avoid one or
two outlying points adding too much space.

So the tricks are

1. aes(x = GDP_per_capita, y = Life_expectancy, size = Population_total/1000000). Note that the
label aesthetic is not used for a static graph as it would lead to too much clutter, but it is useful when
plotly is used.

2. scale_x_log10()
3. scale_y_continuous(limits = c(50, 90))
4. facet_wrap(“year”)

d %>% filter(year%in% c(1975,1990,2015)) %>% ggplot( aes(x = GDP_per_capita, y = Life_expectancy, size = Population_total/1000000, fill = region, label=country)) +
geom_point(shape = 21) +
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labs(x = "GDP per Capita(USD)", y = "Life Expectancy(years)") +
scale_y_continuous(limits = c(50, 90)) +
scale_size(range = c(1, 10)) +
labs(size = "Population(Millions)", fill = "Region") + scale_x_log10() + theme_bw() +facet_wrap("year") + theme(axis.text.x=element_text(angle=45,hjust=1)) -> g1

g1
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Notice how sub-saharan Africa has been left behind in the general increase in life expectancy. The positions
of China and India are also very striking. Looking at individual countries trajectories is possible using
ggplotly.

24.4 Another example

d %>% filter(year%in% c(1990,2015)) %>% filter(Population_total> 10000000) %>% ggplot( aes(x = Energy_intensity_MJ_GDP, y = Agriculture_percent_GDP, size = Population_total/1000000, fill = region,label=country)) +
geom_point(shape = 21) +
labs(x = "Energy intensity", y = "Agriculture as percent GDP") +
scale_size(range = c(1, 10)) + scale_y_continuous(limits = c(1, 50)) +
labs(size = "Population(Millions)", fill = "Region") + theme_bw() +facet_wrap("year") + scale_x_log10() + scale_y_log10()-> g2

g2
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24.5 Using ggplotly

A problem with the completely static figures is that countries cannot be identified, although it is easy to
deduce the identities of those with large populations such as India, China and the USA. Using ggplotly
resolves this, as the label aesthetic can be seen when the mouse hovers over the country.
ggplotly(g1)
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ggplotly(g2)
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The papers referred to here are all available on the server

http://r.bournemouth.ac.uk:82/AQM/AQM_2018/articles/

http://r.bournemouth.ac.uk:82/AQM/AQM_2018/articles/
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