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Abstract. The most common statistical pitfalls in ecological research are those associated with data

exploration, the logic of sampling and design, and the interpretation of statistical results. Although one can

find published errors in calculations, the majority of statistical pitfalls result from incorrect logic or

interpretation despite correct numerical calculations. There are often simple solutions to avoiding these

problems that require only patience, clarity of thinking, probabilistic insight, and a reduced reliance on out-

of-the-box approaches. Some of these trouble spots are inherent to all statistical analyses and others are

particularly insidious in ecology where true controls or replication are challenging, small sample sizes are

common, and correctly linking mathematical constructs and ecological ideas is essential. Here we

summarize the most common statistical pitfalls observed over nearly a century of combined consulting and

research experience in ecological statistics. We provide short, simple solutions.
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INTRODUCTION

Statistical errors are common across a wide

range of disciplines and even in the most

prestigious journals (e.g., Good and Hardin

2003, Garcı́a-Berthou and Alcaraz 2004, Ionnidis

2005, Strasak et al. 2007, Fernandes-Taylor et al.

2011). One study concluded that approximately

44% of the articles reporting statistics in a high

quality medical journal had errors (Glantz 1980).

Ecological research isn’t immune from statistical

mistakes, misconceptions, and miscommunica-

tions. Although a few of these pitfalls are related

to errors in calculations, the majority of statistical

pitfalls are more insidious and result from

incorrect logic or interpretation despite correct

numerical calculations. Such statistical errors can

be dangerous, not because a statistician might

come along and hand out a demerit, but because

they lead to incorrect conclusions and potentially

poor management and policy recommendations.

Over two decades ago, a paper identifying the

10 most common statistical errors from a journal

editor’s perspective was published in the Bulletin

of the Ecological Society of America (Fowler

1990). We revisit and add to the discussion from

our own perspective. We have nearly a century of

combined experience in statistical consulting and

collaboration across a wide range of ecological

topics. We note that (1) some errors, identified by
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Fowler over 20 years ago, are still prevalent and,
in our experience, these weak statistical practices
crop up over and over again. Two decades of the
same mistakes suggests that the message needs
to be repeated. We outline these frequent
misapplications of statistics and provide brief,
simple solutions. We further contribute by (2)
bringing the perspective of consulting and
collaborating statisticians who often identify
erroneous scientific and statistical logic that
infects projects long before the publication stage
evaluated by Fowler (1990). Finally, we (3)
highlight new sources of opportunity and com-
mon confusion that have arisen with some of the
key statistical advances over the past 20 years.

Counting up statistical mistakes is both fun
and shocking but rarely constructive. Instead, we
focus on identifying solutions. We choose in this
manuscript to de-emphasize details of the appli-
cation of statistical tools. We instead focus on
statistics fundamentals, probabilistic thinking,
and the development of correct statistical intui-
tion. The following is a simple list of what are, in
our estimation, the most common and often
easily avoidable statistical pitfalls from a non-
random, somewhat biased, but extensive sample
of projects, questions, and draft manuscripts. The
list is loosely organized into four chronological
categories: setting up an analysis, experimental
design, application of statistics, and interpreta-
tion of statistical tests and models. Within each
category the pitfalls, presented in no particular
order, are intended to serve as a reference or
reminder when conducting or reviewing various
stages of analysis. We necessarily begin with
issues that reflect gaps in statistical thinking and
basic statistical practices. These are, by far, the
most common and easily avoidable mistakes and
are relevant to nearly all statistical analyses. We
then describe common errors and solutions for
more specific yet also common situations.

COMMON STATISTICAL PITFALLS IN SETTING

UP AN ANALYSIS

1. Failure to explore the data.—It is difficult to
overestimate the value of plotting data. Data sets
have errors from multiple sources, e.g., faulty
instrumentation, transcription errors, cut and
paste mistakes. Data simply have to be cleaned
and the best way to see if data are, in fact, clean is
to look at them. As a first quality assurance/

quality control (QA/QC) step, we recommend
preparing and examining a simple histogram for
each variable under consideration for analysis.
Are there outliers or unexpected values? Is the
distribution mound-shaped? Does the distribu-
tion have a different shape that makes sense? Is
the distribution centered on what one intuitively
expects to be the mean?

Additional plots can be used to understand the
structure of the data such as the balance between
zero and non-zero observations, presence of
collinearity in the potential predictor variables,
and likely relationships between predictors and
response variables (Zuur et al. 2010). We also
recommend preparing a plot that answers the
scientific question at hand. Does the expected
difference in treatments, or trend over time,
appear to occur? For example plots that explore
simple linear relationships, see Anscombe (1973).
The conclusions you draw from statistical calcu-
lations in later stages of analysis should not be
surprising after examining these graphs. Note
that if in graphing the data you uncover
surprising patterns or generate new hypotheses,
these patterns and hypotheses cannot be tested
later in traditional ways that demand a priori
hypotheses. Many errors could be avoided
through careful and thoughtful initial data
visualization. Solution: Plot the data early and
often.

2. Arbitrary thresholds, metrics, and indicators.—
Identifying a threshold, metric, or indicator that
is most accurate at a particular site and time and
that best reflects the ecological process of interest
is not a simple problem. Ecologists frequently
assert statements such as, ‘‘We considered sites
with a value of x . 85 to be ‘polluted’’’ and then
continue to consider polluted versus non-pollut-
ed areas in great detail. Clearly that threshold is
part of the analysis because a change in threshold
can change the outcome of the analysis. Consid-
er, for example, a dataset in which most values
are in the range of 75–95. A threshold of x . 85
might lead to a statement that ‘‘The majority of
rivers are polluted’’ while a threshold x . 86
might lead to the opposite statement.

Magnusson (1997) included ‘‘Most ecological
categories are arbitrary’’ as one of the essential
concepts that graduates of a basic statistics
course should understand. Similar problems
arise with summary metrics, e.g., mean of the
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7-day maximum temperature or beta-diversity,
as well as with weighted indicators, e.g., forest
condition index or community resilience index.
There are, for example, multiple ways to com-
pute the daily mean temperature when continu-
ous measurements are unavailable: the average
of the maximum and minimum of hourly data,
the average of the true maximum and minimum
from max/min thermometers, or the average of
multiple hourly observations. Not only do these
methods yield different estimates of the daily
mean temperature but differences between these
alternatives are larger in some seasons than in
others (Ma and Guttorp 2013). Any metric or
indicator is a lens on the data that necessarily
emphasizes some factors and ignores others. As
well, summaries, metrics, and indicators almost
always have different sample variances and
distributional properties than the original data.

Information is filtered when summaries or
aggregations are calculated or when continuous
data are broken into categories. It is necessary to
consider the effect of that filtering on the
inference made from the data. Mallows (1998)
defined the zeroth problem in statistics, the most
basic problem in theoretical statistics, as ‘‘con-
sidering the relevance of the observed data, and
other data that might be observed, to the
substantive problem’’ (Mallows 1998:2). Consid-
ering the relevance of the threshold, metric, or
indicator and of other thresholds, metrics, or
indicators is an essential part of this most
fundamental problem in statistics. The researcher
needs to consider (1) whether a chosen threshold,
metric, or indicator is, in fact, the most relevant
way to summarize information and (2) how the
choice of a different threshold, metric, or indica-
tor might have led to different scientific conclu-
sions. It is also valuable to step back and consider
whether there is a useful method for the question
at hand that doesn’t require summary metrics
such as time-series analysis or multivariate
statistics. For more on defining an ecological
research question, see ‘Scientific Method for
Ecological Research’ (Ford 2000). Solution: Be
explicit in the ecological concept being measured
and in the choice and calculation of thresholds,
metrics, and indicators. Where there are alterna-
tive choices, quantify how those choices might
lead to differing conclusions.

3. Assuming that observations are independent.—

There are many ways in which two (or more)
observations can be dependent and the relation-
ship between these observations depends on the
scale of the specific research question at hand.
Observations can lack independence through
spatial, temporal, or phylogenetic relationships
(Magnusson 1997). The two most common forms
of dependence in ecology are repeated measures
(Gurevitch and Chester 1986) and pseudo-repli-
cation (Hurlbert 1984). These problems generally
occur when a scientist confuses the unit of
observation (sampling unit) and the unit of
inference (experimental unit). In forestry re-
search, for example, randomly selected replicate
plants are nested within a plot because individ-
ual measurements on every seedling or tree at the
plot level can’t be measured. In this case the
replicate plants are the sampling unit and the
plot with its associated treatment is the experi-
mental unit.

While it makes good sense to make several
observations about one thing for which you want
to make inference, be careful. For example, one
might want to compare the strength of various
classes of wood adhesives and, in so doing, make
several observations of the strength of one
application of one wood adhesive. Multiple
measurements or observations of the same
application of adhesive are not independent
observations given this research question and
therefore cannot be entered into a statistical
model as independent data. Doing so would be
a clear case of pseudo-replication; the unit of
inference is the application of wood adhesive. In
another example, one might want to compare
growth rates of two subspecies of alpine fir. The
unit of inference would be an independent tree,
not a measurement of tree size at one point in
time. The true sample size of an experiment or
observational study is the number of indepen-
dent observations of that unit of inference. The
problem gets trickier with large-scale studies. For
example, to quantify effects of forest manage-
ment, the unit of observation is frequently a
treatment unit which might be as large as a
whole watershed. One might make observations
of multiple trees or even stands within each
treatment unit. These are not independent
observations of that forest management treat-
ment; they cannot be entered into a statistical
model as such. These are non-independent, or
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repeated measures, of one treatment unit.
Replicate observations can be extremely valu-

able if understood and handled correctly. Multi-
ple observations of a wood adhesive application
or of a particular treatment can be (1) used to
assess measurement variability, (2) combined to
produce a robust or more informative summary
such as mean strength, growth rate, or average
growth rate, (3) entered individually into a
model which correctly accounts for the depen-
dence between observations, or (4) simply
explored for insight into the dependencies and
structure of the data. Solution: Identify the unit
of inference and use it to determine the true
sample size.

4. Mismatched sampling frame and population.—
In order to make inference to a population, the
entirety of that population must have had a
chance of being included in the sample. Stratified
sampling designs and other customized ap-
proaches can allow individuals within a popula-
tion to have different chances of being included
in the sample; however, in all forms of probabil-
ity sampling, all the individuals in the population
must be part of the sampling frame. The classic
example of a mismatched sampling frame and
population is the Literary Digest 1936 election poll
that incorrectly predicted a landslide for Alfred
London. Americans who did not subscribe to the
Literary Digest, own an automobile, or list their
name in the telephone directory were not
sampled. There were also a large number of
non-responders who were likely quite different
from the responders (Squire 1988). Inference
made to these unsampled individuals was
infamously biased. Despite years of using the
Literary Digest 1936 election poll as the quintes-
sential example of a statistical pitfall, similar
errors persist. In the 2012 presidential election,
one election poll analyst, Dean Chambers,
predicted a win for Mitt Romney, later admitting
he had eliminated poll data that seemed to over-
sample Democrats (Bensinger 2012). By not
including those data, he could not make infer-
ence to those Democrats and his predictions
about the population of the USA were therefore
inaccurate. Similar types of errors are easily
possible when sampling, for example, only
accessible areas for presence-absence of non-
native invasive species and extrapolating to an
entire forest, or when surveying natural resource

volunteers to understand their incentives for
participation and extrapolating the learned ideas
to non-volunteers who likely have a different set
of incentives. Solution: The sampling frame must
include every individual in the population. If that
is impossible, the population to which one makes
inference must be redefined to match the
sampling frame.

COMMON PITFALLS IN EXPERIMENTAL DESIGN

5. Control sites (or reference sites) differ from
treatment sites before the treatment occurs.—Gener-
ally in designed experiments, researchers use
control treatments (also known as control sites or
reference sites) to provide a standard against
which other treatments are contrasted. This use
of control units assumes that they are indistin-
guishable from treated units except for the
application of the experimental treatment. By
being indistinguishable from treated units, these
control units allow experimenters a degree of
confidence that effect estimates are true estimates
of the effect being studied, unpolluted by other
sources of variation. If controls differ from
treated units only in the experimental treatment,
observed differences between treatments and
controls can be attributed solely to the treatments
(and their installation).

It is not uncommon, however, to encounter
experiments in ecology in which control units
differ systematically from the treated units. At
times, control sites are identified not for scientific
reasons but in response to logistical constraints,
e.g., ‘since we’re not going to be doing anything
with this land, why not leave it as a control site?’
In another situation, only the steepest areas are
left as controls to avoid building roads in steep
areas. These types of decisions ignore the
scientific value of an unbiased reference against
which other treatments can be compared. Such
decisions unintentionally undermine the scientif-
ic design of the experiment and often produce
effect estimates and hypothesis tests that are
incorrect. These incorrect effect estimates lead to
misinformation in the scientific literature and
frequently to overly optimistic expectations of
outcomes when the experimental results are
incorporated into operational strategies.

In many cases, true controls are simply
impossible and this should eventually be ac-
counted for in the analytical approach. If one is
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certain that relative differences between controls
and treatments are constant before and after
treatment, some designs can still be valid.
However, if that assumption is false or if
measurements are auto-correlated over time,
the presence of a control site can actually reduce
the power of the design (Roni et al. 2005).
Collecting data prior to the experimental phase
of the study can help. In this case, analysis of
covariance may be used to account for differenc-
es in experimental units before treatments are
added. However, accounting for pre-treatment
differences cannot replace the value of an
unbiased reference. Note that as experiments
increase in spatial scale to whole ecosystems or
watersheds, the very idea of replicated study
units becomes an impossibility and careful
thought needs to be applied in using traditional
statistical tools. Solution: Assign treatment and
control sites randomly. Where pre-treatment data
are available, test for systematic differences
between units assigned as controls and treat-
ments (or assigned to different treatment types).

6. Measurement strategies that confound experi-
mental designs.—Designed experiments are pow-
erful tools for acquiring new scientific
knowledge. This is as true in ecology as it is in
other branches of science. Even within seemingly
well-designed experiments, the timing and place-
ment of measurements within experimental units
and among treatments are critically important.
One must carefully think through all potential
sources of variation in the experiment in order to
prevent systematic variation from being acci-
dently allowed into the data. For example, some
ecological measurements are time-sensitive. That
is, the time of day, or time of year can be vitally
important. If researchers are looking at, for
example, gas exchange in foliage or water
conductance in vascular plants, they will want
to make sure that measurement times are
randomly assigned across treatments to avoid
consistently measuring one treatment during
peak gas-exchange times or peak water-conduc-
tance times. Likewise, if there is the possibility of
observer error or measurement drift, measure-
ments must be assigned randomly or systemat-
ically across treatments so that these unintended
sources of variation or bias are not lumped into
the treatment effect. A good experimental or
sampling design can only be as good as the

measurement strategy used to collect the data.
Solution: Ensure that measurement strategies
account for time- or space-sensitive measure-
ments in designed experiments (or sample
surveys).

7. Failure to model covariates at the correct
level.—Analysis of covariance is frequently mis-
used in experimental studies, in particular when
interactions are present. Unlike observational
studies, testing whether the covariate is useful
in an experimental setting can save degrees of
freedom; however, failure to test covariates can
lead to misspecified models and erroneous
conclusions. For the most common analysis of
covariance model, testing for an effect of treat-
ment amounts to assessing whether parallel
regression lines (one for each treatment) are far
enough apart to be considered statistically
significant. Since the regression lines are parallel,
they can be compared at any value of the
covariate, including X ¼ 0. However, if there is
a significant interaction, the standard analysis
structure cannot simply be extended to include a
separate slope for each treatment. Regression
lines are no longer parallel; therefore comparison
among the regression lines at different values of
the covariate may lead to different conclusions
about the presence or absence of a treatment
affect. In this case, testing for a treatment effect
needs to occur at particular and meaningful
values of the covariate in order to determine
whether there is a treatment affect and to
understand how it might be observed given
various levels of the covariate (Littell et al. 1996).
Solution: When interactions are present between
treatment levels and a covariate, look for
treatment effects at meaningful values of that
covariate.

PITFALLS IN THE APPLICATION OF STATISTICS

8. Unnecessary data transformations.—Tools
have been relatively recently developed and are
now easily available for analyzing data that are
not simple, normal observations. For example, it
was once recommended that count data be
transformed in order to meet the assumptions
of Gaussian linear models; however, Gaussian
models based on log-transformed data can
perform poorly under many circumstances such
as zero-inflation, small means, or over-dispersion
(O’Hara and Kotze 2010). There is no longer a
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need to transform count data. Poisson data can
be correctly modeled using a generalized linear
model for the Poisson or negative binomial
family. Similarly, arcsin transformations were
routinely recommended for proportion data
because we, the scientists, needed to stuff them
into a Gaussian linear model. It is now possible
to model proportional data correctly using
generalized linear models based on the binomial
family. These models are interpretable and
maintain information in both the numerator
and denominator (Warton and Hui 2011). Also
remember that transforming the data can change
the distribution of the data. Solution: Where
possible, use a statistical tool that is designed for
the distribution and correlation structure inher-
ent in your data. Transform the response as a last
resort.

9. Not dealing appropriately with zeros.—Zeros
are data, they cannot be eliminated or ignored for
convenience, and they are often maddeningly
present in ecological data sets, e.g., number of
chipmunks per ha, presence/absence of wildfire,
or grams of hazardous waste in the waste stream.
Inference based on data with a large number of
zeros can be downright wrong or inefficient if the
zeros are not appropriately understood and
modeled. Zeros can arise from multiple mecha-
nisms such as the failure to detect an event or
individual that was actually present (false zero)
or the absence of an event or individual (true
zero). Specialized statistical models, zero-inflated
models, exist to account for and model sources of
zeros (e.g., Martin et al. 2005).

Often, however, the zeros arise from a different
process than the non-zero observations. For
example, the zeros might reflect that there was
no forest fire at all while the majority of the non-
zero observations describe damage from a forest
fire. In these cases, a hurdle model can be a
useful and simple approach. A hurdle model
essentially fits one model to the presence/absence
part of the data and a second conditional model
(conditional on having leapt the hurdle of
presence) to the non-zero observations. In the
above example, the first part of the model would
predict conditions under which a fire occurred
and the second part of the model would predict
damage, conditional on the presence of a fire.
Hurdle models, though simple and relatively
easy to fit, have demonstrated extremely strong

performance (correlation between observed and
predicted values) when compared to other
potential approaches (Potts and Elith 2006).
Other choices for modeling data sets with a
disproportionately large number of zeros include
models based on the negative binomial and
quasi-Poisson distributions (Martin et al. 2005).
Solution: Do not ignore, delete, or average away
large numbers of zero observations. Consider the
mechanism generating the zeros and choose a
modeling approach that properly accounts for
that mechanism.

10. Ignoring underlying correlation structure.—
Similarly, advances in statistics allow models that
incorporate complex underlying correlation
structures. Advancements in linear mixed mod-
els over the last decade have provided a wealth
of covariance structures to model repeated
measures over space or time. For example, PROC
MIXED in SAS has approximately 35 spatial and
temporal covariance structures to choose from
(SAS Institute 2011). New approaches are also
being developed that include covariance struc-
tures based on both ecological networks and 2-
dimensioal space (Peterson et al. 2013). AIC/AICc
(Akaike information criteria) or BIC (Bayesian
Schwartz information criteria) fit statistics can be
used to select the most appropriate covariance
structure. Avoid testing all available covariance
structures as this is a form of multiple testing. As
in any model selection protocol, use mechanistic
first principles, expert opinion, previously pub-
lished literature, and model diagnostics to
identify subsets of reasonable covariance struc-
tures for testing.

In addition, generalized estimating equations
(GEE) are fairly robust and give consistent
estimators with an unstructured correlation
structure (Liang and Zeger 1986), saving the
issue of how to model the correlation. Data with
correlation structures, imbalances, and depen-
dencies can be attacked with models that account
for these correlations, imbalances, and depen-
dencies. While such complex data can sometimes
be meaningfully explored through summaries
and hierarchical analyses, a common pitfall is to
ignore the correlation or to sub-sample data.
Solution: Where measurements are not likely to
be independent, explicitly model the correlation
structure in the data.

11. Failure to plot the residuals (or other model
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diagnostics).—Statistical models explain only part
of the story in the data. Residual plots and model
diagnostics explore the part of the story that
wasn’t explained by the model. The modeler’s
goal is that the model describes the entire signal
in that data, leaving only meaningless noise in
the residuals. Check by plotting the residuals as a
function of the fitted values. If the residuals look
like meaningless noise, you’re all set. If not, you
need to reconsider your model. Other model
diagnostics tell you whether you have met the
assumptions (usually distributional assumptions
and homogeneity of variance) of the statistical
model. If there are concerns about model
assumptions, be honest and explain how the
failure to meet model assumptions might affect
conclusions from the analysis. Solution: Use
model diagnostics such as residual plots to test
model assumptions and to identify patterns in
the data that are not explained by the model.

12. Conducting too many tests.—Recent articles
have demonstrated that many published scien-
tific findings are false (Ionnidis 2005). This
phenomenon may, at least in part, be due to the
screening of multiple graphs or tests or summary
statistics followed by publication of only the
interesting (or apparently ‘significant’) results.
Researchers often run many, many statistical tests
searching for a significant result. However, the
very definition of a statistically significant result
using an alpha-level of 0.05 is that we might find
one result like that, by chance alone, for every 20
tests we conduct. If 60 tests are conducted and 3
interesting patterns emerge, that is exactly what
we would expect by chance alone. Testing can
effectively occur by graphical analysis alone so
plotting 100 scatterplots of potential relationships
and then only conducting a statistical test on the
2 most interesting plots is, essentially, undermin-
ing the system. Stepwise model-fitting proce-
dures are highly susceptible to this statistical
pitfall. Each step of the model-fitting procedure
can be considered a statistical test and, if there
are a large number of potential predictors, a
highly significant model is likely to emerge even
if the data are uncorrelated random numbers
(Freedman 1983).

During data exploration, it is reasonable to
conduct many tests and make many graphs but
the results of these exercises need to be described
as exploratory and the approximate number of

tests conducted should be indicated. In many
cases, a combined approach is possible in which
a researcher tests an a priori hypothesis in a
hypothesis-testing framework and identifies
whether or not there is a statistically significant
result. The researcher might then go on to
explore the data in order to document any
additional, surprising, or unexpected patterns.
Approaches for explicitly correcting for the
number of tests conducted, e.g., Bonferroni
corrections, or for controlling the false discovery
rate are also available (e.g., Benjamini and
Hochberg 1995). Solution: Be honest about the
number of tests performed and incorporate that
information when you draw ecological conclu-
sions. Be explicit about when you are testing an a
priori hypothesis versus when you are exploring
the data.

13. Blind use of a new fancy tool.—New statis-
tical methods are developed, usually tested, and
published every day. Often new tools become
fashionable and researchers attempt to apply the
new tool without deep understanding of how it
works, what its limitations are, or even what
question, specifically, the tool is answering.
Sometimes, within a discipline, use of a new tool
or statistical approach becomes seemingly neces-
sary to get published. Take, for example, infor-
mation-theoretic approaches (Burnham and
Anderson 2002). These methods are incredibly
valuable in particular contexts and applications,
but not all. For many years, it was difficult to
publish a paper in wildlife sciences that did not
use these methods, leading researchers to apply
them even when they were not the best choice. It
took an article from the editor of the Journal of
Wildlife Sciences to stem the mis-understanding.
The article pointed out that ‘‘one size does not fit
all’’ and re-focused the discussion on stating
objectives, reporting a priori hypotheses, careful
distinction between exploratory and confirmato-
ry analyses, and clearly understanding the
statistical framework one chooses to employ
(Thompson 2010).

More recently, there has been a proliferation of
articles and methods papers on applications of
data-mining and machine-learning approaches in
Ecology (Breiman 2001, He and Garcia 2009). Yet,
these approaches are often incorrectly applied as
statistical tools (He and Garcia 2009). Machine-
learning represents a different paradigm than
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traditional hypothesis testing or model building
and comes with new assumptions, limitations,
and possibilities. Identification of best practices
for their application may differ from those in
traditional statistical analysis. For example, Bar-
bet-Massin et al. (2012) conclude that best
practices for generating pseudo-absences differ
for regression techniques versus classification
and machine-learning techniques. Solution:
Choose a statistical tool based on the research
question at hand and the design under which the
data were collected rather than statistical-fashion.
Understand that tool, its paradigm, limitations,
potential biases, and assumptions.

PITFALLS IN THE INTERPRETATION OF

STATISTICAL TESTS AND MODELS

14. Misinterpretation of a non-significant p val-
ue.—Statisticians can enjoy hardy debate about
how best to employ p values and critical values
(alpha levels) and about what statistical frame-
work is best for hypothesis testing. However,
there is generally agreement about what consti-
tutes misinterpretation of a p value. A p value,
originally introduced by Fisher (1926), was
intended as a ‘‘rough numerical guide of the
strength of evidence’’ (Goodman 2008:135). The p
value describes the proportion of experiments
expected to get data like this or more extreme
than this under the null hypothesis (usually) of
no difference. ‘Data like this or more extreme
than this’ are most often summarized in a test
statistic. The ‘no difference’ part of the definition
could reflect no difference between treatments,
between types of observations, between treat-
ments and controls, or between parameter
estimates and a reference value, usually zero.

There are a host of ways that the p value can be
misinterpreted (Goodman 2008) and misinterpre-
tations persist despite decades of articles trying
to correct them. The most dangerous of these
misconceptions is that a p value can be used to
make a determination of no difference in a
traditional hypothesis testing context. A high p
value can result when the null hypothesis is quite
false but data are simply too sparse or too
variable to reject it. Statistical tests are generally
set up by assuming that the null hypothesis is
true and collecting observations to disprove it. If
adequate data are not collected to reject the null
hypothesis then, without careful a priori power

calculations, little can be said about the likeli-
hood of the null hypothesis actually being true.
For example, if the analysis of an experiment
designed to compare the effects of riparian forest
management techniques on mollusk communi-
ties is summarized with a p value of 0.211, this
does not indicate that there is no difference
between the effects of alternative riparian man-
agement treatments on mollusk communities.
Absence of enough evidence to disprove the null
hypothesis is not evidence of the null hypothesis
(Altman and Bland 1995). Particularly with high
variability and/or small sample sizes, you can
only conclude that there was insufficient power
to detect a difference; you cannot proclaim that
the effect doesn’t exist. Solution: Do not use p
values to claim ‘‘no difference’’ or that treatments
are ‘‘the same’’ unless you have very specifically
set up your analyses to test for similarity.

15. Inappropriate comparisons of p values.—A
related temptation is to compare p values across
sample sizes or populations. Researchers, under-
standably, want to reduce statistical analyses to a
single number such as a p value or R2 in order to
ease comparison of results and to allow for
concise interpretations. But, in so doing, they
may ignore important elements of the context of
the analysis. A common pitfall is to observe a p
value of 0.043 for treatment 1 versus treatment 2
(n ¼ 186) and a p value of 0.36 for treatment 2
versus treatment 3 (n¼ 12) and then to conclude
that treatments 1 and 2 are ‘‘more different’’ than
treatments 2 and 3. Comparisons across popula-
tions that are particularly homogenous versus
particularly variable have similar limitations.

Take, for example, data on wildfire risk factors
such as drought and the prevalence of insect
damage. In a particular region, one might
observe that drought significantly increases
wildfire risk ( p ¼ 0.01). In a separate t-test, the
effect of the prevalence of insect damage might
be non-significant ( p ¼ 0.3). The superficial
interpretation of these results is that drought
has an effect on wildfire risk but that the
prevalence of insect damage does not. Looking
more thoughtfully at the data, we find that this
conclusion is incorrect and could lead to poor
decision-making and risk assessments. Imagine
that, on average, plots with higher drought
ratings (n ¼ 1157) were much more likely to
have a wildfire with an increase in the odds of
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wildfire of 0.04 for every unit increase in drought
rating. While, on average, plots with higher
prevalence of insect damage (n ¼ 204) were
much more likely to have a wildfire with an
increase of 0.12 in the odds of wildfire for every
unit increase in insect damage prevalence. What
is the correct interpretation? We can say with
confidence that drought tends to increase wild-
fire risk and that these results are unlikely due to
chance alone. We also see that the estimated
effect size (Grissom and Kim 2005) for the
prevalence of insect damage is much larger than
that of drought but because few stands had
insect damage it was not possible to conclude
that these results are unlikely due to chance
alone. Solution: Compare effect sizes and report
your certainty about whether the observed effects
are due to chance alone. Do not make conclu-
sions by comparing p values where sample sizes
or variability differ across elements being com-
pared.

16. Implying ecological significance from statisti-
cal significance where there are very large sample
sizes.—In some data sets, sample size is so large
that even miniscule effects yield very small p
values and what could be declared to be highly
significant results. The word ‘significance’ is
frequently misinterpreted to mean ‘important’
or ‘meaningful’. The problem has become so
intractable that some scientists are calling for a
ban on the use of the word ‘significant’ (Higgs
2013). With very large sample sizes, you essen-
tially have a much bigger magnifying glass for
exploring the data and you can therefore detect a
much smaller signal. What if 100,000 subjects
were studied with equal numbers of people
randomly selected from the East Coast and from
the West Coast, and a significant difference of
0.001 grams is found in the birth weights of the
two coasts? A statistically correct but biologically
misleading headline could read: ‘‘Birth outcomes
differ significantly by coast!’’ Although the effect
is statistically significant, is the effect size
(Grissom and Kim 2005) biologically relevant?
Clearly the context of statistical results is as
important as the results themselves, and this
context should be included in any interpretation
of statistical analyses. Solution: Particularly with
large sample sizes, effects sizes should be
considered. Meaningful results need to be both
statistically significant and ecologically impor-

tant.
17. Misinterpretation of coefficients in multiple

regression models.—Coefficients in a multiple
regression model cannot be interpreted in isola-
tion and without considering the observed range
of values of the predictor variables. Imagine that
through some model selection procedure the
following final multiple regression model is
chosen:

Y ¼ b0 þ b1 3 Canopy coverþb2 3 Elevation

where Y is any response variable. Can this model
be used to state whether canopy cover or
elevation has a larger effect on the response?
An extremely common interpretation if b1 is
larger than b2, is that b1 has a greater effect than
b2 on the response. This is incorrect and sloppy.

Correct interpretations are not mathematically
challenging. The correct interpretation of the
intercept (b0) is that it is the expected value of
the response when both canopy cover and
elevation are zero. In the absence of interactions,
each coefficient describes the expected change in
in the response for a 1-unit change in the
predictor, keeping all other predictor variables
constant. If b1¼ 2, we can conclude that for every
1% increase in canopy cover (assuming no
changes in elevation), we expect that the
response increases by 2. A coefficient of 0.5 for
elevation indicates that for every meter change in
elevation (assuming no change in canopy cover),
the response variable is expected to increase by
0.5. The correct interpretation is that it would
take a change in elevation of 4 meters (430.5¼2)
to equal the effect of a 1% change in canopy
cover, assuming all other variables are kept
constant. The math is not the trickiest part. The
challenge of determining which variable has a
greater effect on the response is in the definition
of ‘greater’. Note that the ecological and math-
ematical interpretation of model coefficients
should also consider their standard errors, the
potential presence of interactions, and any
underlying correlations between predictors. So-
lution: Interpret the coefficients of a linear model
slowly, carefully, and in the context of the
explanatory and response variables.

18. Extrapolation.—Extrapolation is tempting.
Scientists, managers, and even statisticians long
to make inference about one set of conditions
from data collected under a different set of
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conditions. Predictions about new places, times,
situations, and species for which we have no data
will always be needed. However, these extrapo-
lations need to be presented honestly along with
the host of necessary caveats (Chatfield 2006).
The most common form of extrapolation is to
make predictions for new conditions which are
outside of the range of the data used to build the
model, including the correlation structure of the
data used to build the model. The usefulness of
these predictions depends greatly on whether the
model form was correctly specified and whether
that same model form holds for the new
conditions.

The traditional example is temperature. In-
creases in water temperature increase fish growth
rates in many experiments. This relationship is
often assumed to be linear and, within the range
of many experiments, it is linear. However, if one
were to extrapolate to, say, 1008C, a prediction of
extremely fast growth rates based on the linear
model would be comical and potentially tragic.
The relationship is not linear between the
observed and new conditions and therefore
cannot be extrapolated. In many landscape
models, several moderately correlated variables
are applied to make a prediction. For example,
one might predict stream habitat from a linear
combination of the percent of agriculture and
road density in the watershed. Such a model
might work well in Area A where agriculture
tends to be poorly correlated with roads but
strongly correlated with percent alluvium. In
nearby Area B (or even in Area A measured at a
finer scale), differing underlying correlations
between agriculture, roads, and alluvium might
lead to extremely inaccurate predictions (Lucero
et al. 2011). Solution: Be honest when predictions
are extrapolated to new places, times, conditions,
or correlation structures and provide a thought-
ful list of assumptions.

CONCLUSIONS

There has been a great deal of discussion about
the need for statistical thinking (e.g., Snee 1990,
Wild and Pfannkuch 1999) which was defined by
Snee (1990:118) as ‘‘thought processes, which
recognize that variation is all around us...’’ A
1993 American Statistical Association working
group defined statistical thinking as ‘‘(a) the

appreciation of uncertainty and data variability
and their impact on decision-making; (b) the use
of the scientific method in approaching issues
and problems’’ (Mallows 1998:3). Some basics of
statistical intuition were also outlined in an
article entitled ‘‘Ecology 101’’ by Magnusson
(1997). He identified 11 concepts that students
should understand at the end of a statistics
course and before collecting data. Sixteen years
later, we frequently observe that recent graduates
who have taken several statistics courses are not
familiar with these basic ideas. That errors in the
basics of statistical thought and analysis remain
embedded in ecological training suggests a need
to reconsider how we incorporate high quality
statistics in ecological education and research.

Statistical inference is an integral component of
ecological research. We encourage all ecologists
to both shore up their own statistical training and
to work collaboratively with someone trained in
applied statistics from the earliest stages of
research planning. Statistical training can be
gained most easily in graduate school. Encour-
aging students in all branches of ecology to add
an extra statistics class (or two or three) to their
curriculum plan will surely benefit the discipline
in the long run. Statistics is evolving rapidly
however, perhaps more rapidly than most other
scientific disciplines because of the massive
increases in both computing power and data
availability. Reading statistics papers (and we
would encourage statisticians to remember the
applied and even non-statistical specialist audi-
ence), attending lectures, taking on-line courses,
and focused self-study are all options for
expanding one’s statistical know-how long after
graduate school. Statistical intuition and statisti-
cal thinking often develop with experience and
collaborations beyond classroom learning. Col-
laboration with trained and experienced applied
statisticians is an excellent way to improve a
study plan or experimental design, ‘‘significant-
ly’’ reduce the occurrence of pitfalls as described
here, and, perhaps, gain access to tools and
approaches that you might not have otherwise
considered.

Often the best road is to slow down and think.
As one anonymous Associate Editor from North-
west Science wrote in response to a manuscript
that came across one of the co-authors’ consult-
ing desk, ‘‘I would love to see this in print, but
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you really need to take it back to the drawing
board, drop all the hypothesis tests, and do some
good old fashioned thinking about what the data
are telling you, practically and biologically.’’
Impressive calculations and complex modeling
should not come at the cost of deeply under-
standing how the math and the ecology interact
to create new knowledge.

Clearly, avoiding pitfalls often takes time.
Clean, careful quantitative analysis usually takes
more time than sloppy statistics. Clean, careful
quantitative analyses, however, are an indispens-
able tool for making inference from observations
in a world full of natural variability. Statistical
intuition, thoughtful application of even simple

statistics, deep understanding of the statistical

paradigm being applied, and honesty can go a

long way in preventing the misuse of statistics

(Table 1). ‘‘Why, given the extensive resources

and time it takes to collect the data, do some

people expect to be able to do the analysis in an
afternoon? Why would they want to?’’ (Clayton

2007:303).
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Table 1. Simple solutions for avoiding common statistical pitfalls.

Statistical pitfall Simple solution

Common statistical pitfalls in setting up an analysis
Failure to explore the data Plot the data early and often.
Arbitrary thresholds, metrics, and indicators Be explicit in the choice and calculation of thresholds,

metrics, and indicators.
Assuming that observations are independent Identify the unit of inference and use it to determine the

true sample size.
Mismatched sampling frame and population Ensure that the sampling frame includes every individual in

the population.
Common pitfalls in experimental design

Control sites (or reference sites) differ from treatment sites
before the treatment occurs

Assign treatment and control sites randomly; test for
systematic differences between units assigned as controls
and treatments.

Measurement strategies that confound experimental
designs

Ensure that measurement strategies account for time- or
space-sensitive measurements.

Failure to model covariates at the correct level When interactions are present between treatment levels and
a covariate, look for treatment effects at meaningful
values of that covariate.

Pitfalls in the application of statistics
Unnecessary data transformations Transform the response as a last resort.
Ignoring underlying correlation structure Where measurements are not likely to be independent,

explicitly model the correlation structure in the data.
Failure to plot the residuals (or other model diagnostics) Plot the residuals to identify patterns in the data that are

not explained by the model.
Conducting too many tests Be honest about the number of tests performed and explicit

about whether you are testing an a priori hypothesis
versus exploring the data.

Not dealing appropriately with zeros Do not ignore, delete, or average away large numbers of
zero observations.

Blind use of a new fancy tool Choose a statistical tool based on the research question at
hand not statistical fashion.

Pitfalls in the interpretation of statistical tests and models
Misinterpretation of a non-significant p value Do not use p values to claim ‘‘no difference’’ or that

treatments are ‘‘the same’’ unless you have very
specifically set up your analyses to test for similarity.

Inappropriate comparisons of p values Compare effect sizes and report your certainty about
whether the observed effects are due to chance alone.

Implying ecological significance from statistical
significance where there are very large sample sizes.

Particularly with large sample sizes, effects sizes should be
considered. Meaningful results need to be both
statistically significant and ecologically important.

Misinterpretation of coefficients in multiple regression
models

Interpret the coefficients of a linear model slowly, carefully,
and in the context of the explanatory and response
variables.

Extrapolation Be honest when predictions are extrapolated to new places,
times, conditions, or correlation structures.
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